版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省大丰市南阳中学高一下数学期末检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点是直线上一动点,与是圆的两条切线,为切点,则四边形的最小面积为()A. B. C. D.2.在锐角三角形中,,,分别为内角,,的对边,已知,,,则的面积为()A. B. C. D.3.设集合,则()A. B. C. D.4.若,下列不等式一定成立的是()A. B. C. D.5.已知,,,则a,b,c的大小关系为()A. B. C. D.6.在中,角的对边分别是,若,则()A. B.或 C.或 D.7.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为A.5、10、15 B.3、9、18 C.3、10、17 D.5、9、168.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,21,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”,则().A.1 B.2019 C. D.9.已知为等差数列,其前项和为,若,,则公差等于()A. B. C. D.10.某协会有200名会员,现要从中抽取40名会员作样本,采用系统抽样法等间距抽取样本,将全体会员随机按1~200编号,并按编号顺序平均分为40组(1-5号,6-10号,…,196-200号).若第5组抽出的号码为22,则第1组至第3组抽出的号码依次是()A.3,8,13 B.2,7,12 C.3,9,15 D.2,6,12二、填空题:本大题共6小题,每小题5分,共30分。11.若无穷等比数列的各项和等于,则的取值范围是_____.12.若为幂函数,则满足的的值为________.13.已知一扇形的半径为,弧长为,则该扇形的圆心角大小为______.14.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体的所有棱长和为_______.15.设满足约束条件,则的最小值为__________.16.设,数列满足,,将数列的前100项从大到小排列得到数列,若,则k的值为______;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解居民的用电情况,某地供电局抽查了该市若干户居民月均用电量(单位:),并将样本数据分组为,,,,,,,其频率分布直方图如图所示.(1)若样本中月均用电量在的居民有户,求样本容量;(2)求月均用电量的中位数;(3)在月均用电量为,,,的四组居民中,用分层随机抽样法抽取户居民,则月均用电量在的居民应抽取多少户?18.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.19.如图,四棱锥中,底面为平行四边形,,,底面.(1)证明:;(2)设,求点到面的距离.20.已知数列an的前n项和为S(1)求数列an(2)设bn=an·log221.已知函数().(1)若在区间上的值域为,求实数的值;(2)在(1)的条件下,记的角所对的边长分别为,若,的面积为,求边长的最小值;(3)当,时,在答题纸上填写下表,用五点法作出的图像,并写出它的单调递增区间.0
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
利用当与直线垂直时,取最小值,并利用点到直线的距离公式计算出的最小值,然后利用勾股定理计算出、的最小值,最后利用三角形的面积公式可求出四边形面积的最小值.【详解】如下图所示:由切线的性质可知,,,且,,当取最小值时,、也取得最小值,显然当与直线垂直时,取最小值,且该最小值为点到直线的距离,即,此时,,四边形面积的最小值为,故选A.【点睛】本题考查直线与圆的位置关系,考查切线长的计算以及四边形的面积,本题在求解切线长的最小值时,要抓住以下两点:(1)计算切线长应利用勾股定理,即以点到圆心的距离为斜边,切线长与半径为两直角边;(2)切线长取最小值时,点到圆心的距离也取到最小值.2、D【解析】由结合题意可得:,故,△ABC为锐角三角形,则,由题意结合三角函数的性质有:,则:,即:,则,由正弦定理有:,故.本题选择D选项.点睛:在解决三角形问题中,求解角度值一般应用余弦定理,因为余弦定理在内具有单调性,求解面积常用面积公式,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.3、B【解析】试题分析:由已知得,,故,选B.考点:集合的运算.4、D【解析】
通过反例、作差法、不等式的性质可依次判断各个选项即可.【详解】若,,则,错误;,则,错误;,,则,错误;,则等价于,成立,正确.本题正确选项:【点睛】本题考查不等式的性质,属于基础题.5、D【解析】
由,,,得解.【详解】解:因为,,,所以,故选:D.【点睛】本题考查了指数幂,对数值的大小关系,属基础题.6、D【解析】
直接利用正弦定理,即可得到本题答案,记得要检验,大边对大角.【详解】因为,所以,又,所以,.故选:D【点睛】本题主要考查利用正弦定理求角.7、B【解析】试题分析:高级职称应抽取;中级职称应抽取;一般职员应抽取.考点:分层抽样点评:本题主要考查分层抽样的定义与步骤.分层抽样:当总体是由差异明显的几个部分组成的,可将总体按差异分成几个部分(层),再按各部分在总体中所占比例进行抽样.8、A【解析】
计算部分数值,归纳得到,计算得到答案.【详解】;;;…归纳总结:故故选:【点睛】本题考查了数列的归纳推理,意在考查学生的推理能力.9、C【解析】
由题意可得,又,所以,故选C.【点睛】本题考查两个常见变形公式和.10、B【解析】
根据系统抽样原理求出抽样间距,再根据第5组抽出的号码求出第1组抽出的号码,即可得出第2组、第3组抽取的号码.【详解】根据系统抽样原理知,抽样间距为200÷40=5,
当第5组抽出的号码为22时,即22=4×5+2,
所以第1组至第3组抽出的号码依次是2,7,1.
故选:B.【点睛】本题考查了系统抽样方法的应用问题,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】
根据题意可知,,从而得出,再由,即可求出的取值范围.【详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【点睛】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.12、【解析】
根据幂函数定义知,又,由二倍角公式即可求解.【详解】因为为幂函数,所以,即,因为,所以,即,因为,所以,.故填.【点睛】本题主要考查了幂函数的定义,正弦的二倍角公式,属于中档题.13、【解析】
利用扇形的弧长除以半径可得出该扇形圆心角的弧度数.【详解】由扇形的弧长、半径以及圆心角之间的关系可知,该扇形的圆心角大小为.故答案为:.【点睛】本题考查扇形圆心角的计算,解题时要熟悉扇形的弧长、半径以及圆心角之间的关系,考查计算能力,属于基础题.14、【解析】
取半正多面体的截面正八边形,设半正多面体的棱长为,过分别作于,于,可知,,可求出半正多面体的棱长及所有棱长和.【详解】取半正多面体的截面正八边形,由正方体的棱长为1,可知,易知,设半正多面体的棱长为,过分别作于,于,则,,解得,故该半正多面体的所有棱长和为.【点睛】本题考查了空间几何体的结构,考查了空间想象能力与计算求解能力,属于中档题.15、-1【解析】
由约束条件作出可行域,由图得到最优解,求出最优解的坐标,数形结合得答案.【详解】由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣1.故答案为:﹣1.【点睛】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.16、【解析】
根据递推公式利用数学归纳法分析出与的关系,然后考虑将的前项按要求排列,再根据项的序号计算出满足的值即可.【详解】由已知,a1=a,0<a<1;并且函数y=ax单调递减;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……当为奇数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为奇数时,;当为偶数时,用数学归纳法证明,当时,成立,设时,,当时,因为,结合的单调性,所以,所以即,所以时成立,所以为偶数时,;用数学归纳法证明:任意偶数项大于相邻的奇数项即证:当为奇数,,当时,符合,设时,,当时,因为,结合的单调性,所以,所以,所以,所以时成立,所以当为奇数时,,据此可知:,当时,若,则有,此时无解;当时,此时的下标成首项为公差为的等差数列,通项即为,若,所以,所以.故答案为:.【点睛】本题考查数列与函数的综合应用,难度较难.(1)分析数列的单调性时,要注意到数列作为特殊的函数,其定义域为;(2)证明数列的单调性可从与的关系入手分析.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)200(2)224(3)4户【解析】
(1)因为,所以月均用电量在的频率为,即可求得答案;(2)因为,设中位数为,,即可求得答案;(3)月均用电量为,,,的频率分别为,即可求得答案.【详解】(1),得.月均用电量在的频率为.设样本容量为N,则,.(2),月均用电量的中位数在内.设中位数为,,解得,即中位数为.(3)月均用电量为,,,的频率分别为应从月均用电量在的用户中抽取(户)【点睛】本题考查了用样本估计总体的相关计算,解题关键是掌握分层抽样的计算方法和样本容量,中位数定义,考查了分析能力和计算能力,属于基础题.18、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值,从而得的范围,研究的单调性可得;(3)根据新数列的构造方法,在求新数列的前项和时,对分类:,和三类,可求解.试题解析:(1)∵,∴数列是首项为1,公差为的等差数列,∴,即,∴,又,∴.∵,∴数列是等差数列,设的前项和为,∵且,∴,∴的公差为(2)由(1)知,∴,∴设,则,∴数列为递增数列,∴,∵对任意正整数,都有恒成立,∴.(3)数列的前项和,数列的前项和,①当时,;②当时,,特别地,当时,也符合上式;③当时,.综上:考点:等差数列的通项公式,数列的单调性,数列的求和.19、(1)见解析(2)【解析】试题分析:(Ⅰ)要证明线线垂直,一般用到线面垂直的性质定理,即先要证线面垂直,首先由已知底面.知,因此要证平面,从而只要证,这在中可证;(Ⅱ)要求点到平面的距离,可过点作平面的垂线,由(Ⅰ)的证明,可得平面,从而有平面,因此平面平面,因此只要过作于,则就是的要作的垂线,线段的长就是所要求的距离.试题解析:(Ⅰ)证明:因为,,由余弦定理得.从而,∴,又由底面,面,可得.所以平面.故.(Ⅱ)解:作,垂足为.已知底面,则,由(Ⅰ)知,又,所以.故平面,.则平面.由题设知,,则,,根据,得,即点到面的距离为.考点:线面垂直的判定与性质.点到平面的距离.20、(1)an=【解析】
(1)利用an=S(2)利用错位相减法可求Tn【详解】(1)因为Sn=2整理得到an=4,n=1(2)因为bn所以Tn2T所以-Tn【点睛】数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数列的乘积,则用错位相减法;如果通项可以拆成一个数列连续两项的差,那么用裂项相消法;如果通项的符号有规律的出现,则用并项求和法.21、(1);(2);(3)填表见解析,作图见解析,().【解析】
(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 养老院医疗废物处理制度
- 企业员工晋升与发展制度
- 会议议程调整与临时决策制度
- 2026年财务成本控制与优化考试题集
- 2026年体育教育理论初级体育教师专业知识模拟题
- 2026年医疗行业面试知识问答与技巧
- 2026年材料科学高级职称评审专业知识题集与解析
- 2026年信息论协议
- 2026年新版声纹验证协议
- 唐代书法知识
- 文献检索与论文写作 课件 12.1人工智能在文献检索中应用
- 艾滋病母婴传播培训课件
- 公司职务犯罪培训课件
- 运营团队陪跑服务方案
- 北京中央广播电视总台2025年招聘124人笔试历年参考题库附带答案详解
- 2026年高端化妆品市场分析报告
- 工业锅炉安全培训课件
- 2026中国单细胞测序技术突破与商业化应用前景报告
- 2025年深圳低空经济中心基础设施建设研究报告
- 中科曙光入职在线测评题库
- 叉车初级资格证考试试题与答案
评论
0/150
提交评论