版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昭通市永善一中2025届高一数学第二学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.一个体积为的正三棱柱(底面为正三角形,且侧棱垂直于底面的棱柱)的三视图如图所示,则该三棱柱的侧视图的面积为()A. B.3 C. D.122.圆与圆的位置关系为()A.相交 B.相离 C.相切 D.内含3.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π44.已知数列的前项和为,且,则()A. B. C. D.5.已知均为实数,则“”是“构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件6.已知,,,则,,的大小关系为()A. B. C. D.7.空间直角坐标系中,点关于轴对称的点的坐标是()A. B.C. D.8.执行如图所示的程序,已知的初始值为,则输出的的值是()A. B. C. D.9.若圆上至少有三个不同的点到直线的距离为,则直线的斜率的取值范围是()A. B.C. D.10.在区间上随机选取一个实数,则事件“”发生的概率是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.某企业利用随机数表对生产的800个零件进行抽样测试,先将800个零件进行编号,编号分别为001,002,003,…,800从中抽取20个样本,如下提供随机数表的第行到第行:若从表中第6行第6列开始向右依次读取个数据,则得到的第个样本编号是_______.12.在平行四边形中,=,边,的长分别为2,1.若,分别是边,上的点,且满足,则的取值范围是______.13.在中,角,,所对的边分别为,,,若,则为______三角形.14.已知数列{an}、{bn}都是公差为1的等差数列,且a1+b1=515.如图,直三棱柱中,,,,外接球的球心为О,点E是侧棱上的一个动点.有下列判断:①直线AC与直线是异面直线;②一定不垂直;③三棱锥的体积为定值;④的最小值为⑤平面与平面所成角为其中正确的序号为_______16.如图,在直四棱柱中,,,,分别为的中点,平面平面.给出以下几个说法:①;②直线与的夹角为;③与平面所成的角为;④平面内存在直线与平行.其中正确命题的序号是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.18.如图,在中,,,,.(Ⅰ)求AB;(Ⅱ)求AD.19.已知夹角为,且,,求:(1);(2)与的夹角.20.设两个非零向量与不共线,(1)若,,,求证:三点共线;(2)试确定实数,使和同向.21.已知向量,.函数的图象关于直线对称,且.(1)求函数的表达式:(2)求函数在区间上的值域.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据侧视图的宽为求出正三角形的边长为4,再根据体积求出正三棱柱的高,再求侧视图的面积。【详解】侧视图的宽即为俯视图的高,即三角形的边长为4,又侧视图的面积为:【点睛】理解:侧视图的宽即为俯视图的高,即可求解本题。2、B【解析】
首先把两个圆的一般方程转化为标准方程,求出其圆心坐标和半径,再比较圆心距与半径的关系即可.【详解】有题知:圆,即:,圆心,半径.圆,即:,圆心,半径.所以两个圆的位置关系是相离.故选:B【点睛】本题主要考查圆与圆的位置关系,比较圆心距和半径的关系是解决本题的关键,属于简单题.3、D【解析】
由BC=2AC,根据正弦定理可得:sinA=2sinB,由角【详解】由于在ΔABC中,有BC=2AC,根据正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函数的图像可得:A∈[故答案选D【点睛】本题考查正弦定理在三角形中的应用,以及三角函数图像的应用,属于中档题.4、D【解析】
通过和关系,计算通项公式,再计算,代入数据得到答案.【详解】,取,两式相减得:是首项为4,公比为2的等比数列.故答案选D【点睛】本题考查了等比数列的通项公式,前N项和,意在考查学生的计算能力.5、A【解析】解析:若构成等比数列,则,即是必要条件;但时,不一定有成等比数列,如,即是不充分条件.应选答案A.6、D【解析】
利用指数函数、对数函数的单调性直接求解.【详解】解:因为,,所以,,的大小关系为.故选:D.【点睛】本题考查三个数的大小比较,考查指数函数、对数函数的单调性等基础知识,属于基础题.7、A【解析】
关于轴对称,纵坐标不变,横坐标、竖坐标变为相反数.【详解】关于轴对称的两点的纵坐标相同,横坐标、竖坐标均互为相反数.所以点关于轴对称的点的坐标是.故选:A.【点睛】本题考查空间平面直角坐标系,考查关于坐标轴、坐标平面对称的问题.属于基础题.8、C【解析】
第一次运行:,满足循环条件因而继续循环;接下来继续写出第二次、第三次运算,直至,然后输出的值.【详解】初始值第一次运行:,满足循环条件因而继续循环;第二次运行:,满足循环条件因而继续循环;第三次运行:,不满足循环条件因而继续循环,跳出循环;此时.故选:C【点睛】本题是一道关于循环结构的问题,需要借助循环结构的相关知识进行解答,需掌握循环结构的两种形式,属于基础题.9、C【解析】
作出图形,设圆心到直线的距离为,利用数形结合思想可知,并设直线的方程为,利用点到直线的距离公式可得出关于的不等式,解出即可.【详解】如下图所示:设直线的斜率为,则直线的方程可表示为,即,圆心为,半径为,由于圆上至少有三个不同的点到直线的距离为,所以,即,即,整理得,解得,因此,直线的斜率的取值范围是.故选:C.【点睛】本题考查直线与圆的综合问题,解题的关键就是确定圆心到直线距离所满足的不等式,并结合点到直线的距离公式来求解,考查数形结合思想的应用,属于中等题.10、B【解析】
根据求出的范围,再由区间长度比即可得出结果.【详解】区间的长度为;由,解得,即,区间长度为,事件“”发生的概率是.故选B.【点睛】本题主要考查与长度有关的几何概型,熟记概率计算公式即可,属于基础题型.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解析】
根据随机数表法抽样的定义进行抽取即可.【详解】第6行第6列的数开始的数为808,不合适,436,789不合适,535,577,348,994不合适,837不合适,522,535重复不合适,1合适则满足条件的6个编号为436,535,577,348,522,1,则第6个编号为1,故答案为1.【点睛】本题考查了简单随机抽样中的随机数表法,主要考查随机抽样的应用,根据定义选择满足条件的数据是解决本题的关键.本题属于基础题.12、【解析】
以A为原点AB为轴建立直角坐标系,表示出MN的坐标,利用向量乘法公式得到表达式,最后计算取值范围.【详解】以A为原点AB为轴建立直角坐标系平行四边形中,=,边,的长分别为2,1设则当时,有最大值5当时,有最小值2故答案为【点睛】本题考查了向量运算和向量乘法的最大最小值,通过建立直角坐标系的方法简化了技巧,是解决向量复杂问题的常用方法.13、等腰或直角【解析】
根据正弦定理化简得到,得到,故或,得到答案.【详解】利用正弦定理得到:,化简得到即故或故答案为等腰或直角【点睛】本题考查了正弦定理和三角恒等变换,漏解是容易发生的错误.14、1【解析】
根据等差数列的通项公式把abn转化到a1+(bn-1)【详解】S=[=[=na1=4n+n(n-1)故答案为:12【点睛】本题主要考查等差数列通项公式和前n项和的应用,利用分组求和法是解决本题的关键.15、①③④⑤【解析】
由异面直线的概念判断①;利用线面垂直的判定与性质判断②;找出球心,由棱锥底面积与高为定值判断③;设,列出关于的函数关系式,结合其几何意义,求出最小值判断④;由面面成角的定义判断⑤【详解】对于①,因为直线经过平面内的点,而直线在平面内,且不过点,所以直线与直线是异面直线,故①正确;对于②,当点所在的位置满足时,又,,平面,所以平面,又平面,所以,故②错误;对于③,由题意知,直三棱柱的外接球的球心是与的交点,则的面积为定值,由平面,所以点到平面的距离为定值,所以三棱锥的体积为定值,故③正确;对于④,设,则,所以,由其几何意义,即直角坐标平面内动点与两定点,距离和的最小值知,其最小值为,故④正确;对于⑤,由直棱柱可知,,,则即为平面与平面所成角,因为,,所以,故⑤正确;综上,正确的有①③④⑤,故答案为:①③④⑤【点睛】本题考查异面直线的判定,考查面面成角,考查线线垂直的判定,考查转化思想16、①③.【解析】
利用线面平行的性质定理可判断①;利用平行线的性质可得直线与的夹角等于直线与所成的角,在中即可判断②;与平面所成的角即为与平面所成的角可判断③;根据直线与平面的位置关系可判断④;【详解】对于①,由,平面平面,则,又,所以,故①正确;对于②,连接,由,即直线与的夹角等于直线与所成的角,在中,,显然直线与的夹角不为,故②不正确;对于③,与平面所成的角即为与平面所成的角,根据三棱柱为直棱柱可知为与平面所成的角,在梯形中,,,,可解得与平面所成的角为,故③正确;对于④,由于与平面相交,故平面内不存在与平行的直线.故答案为:①③【点睛】本题是一道立体几何题目,考查了线面平行的性质定理,求线面角以及直线与平面之间的位置关系,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)445米;(2)在弧的中点处【解析】
(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【点睛】本题考查正弦定理,余弦定理的实际应用,结合了三角函数的化简与求三角函数的最值.18、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)利用余弦定理,解得的长;(Ⅱ)利用正弦定理得,计算得,,再利用为直角三角形,进而可计算的长.【详解】(Ⅰ)在中,由余弦定理有,即,解得或(舍),所以.(Ⅱ)由(Ⅰ)得,在中,由正弦定理有,得,,所以,,又,则为直角三角形,所以,即,故.【点睛】本题考查余弦定理和正弦定理的简单应用,属于基础题.19、(1)(2)【解析】试题分析:(1)先求模的平方将问题转化为向量的数量积问题.(2)根据数量积公式即可求得两向量的夹角.(1),,所以.(2)设与的夹角为.则,因为,所以.考点:1向量的数量积;2向量的模长.20、(1)证明见解析(2)【解析】
(1)根据向量的运算可得,再根据平面向量共线基本定理即可证明三点共线;(2)根据平面向量共线基本定理,可设,由向量相等条件可得关于和的方程组,解方程组并由的条件确定实数的值.【详解】(1)证明:因为,,,所以.所以共线,又因为它们有公共点,所以三点共线.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026吉林省路桥工程(集团)有限公司项目部劳务派遣人员招聘114人笔试备考题库及答案解析
- 2026年江西工业职业技术学院单招综合素质考试备考试题含详细答案解析
- 2026上半年杭州市卫生健康委员会所属十家事业单位招聘116人笔试备考试题及答案解析
- 2026“才聚齐鲁成就未来”山东土地资本投资集团有限公司社会招聘11人笔试备考试题及答案解析
- 2026上海高等研究院光源科学中心博士后研究人员招收2人笔试备考题库及答案解析
- 2026江西事业单位联考吉安市事业单位招聘944人笔试备考试题及答案解析
- 2026云南昆明市西山区人才资源运营管理有限公司招募高校毕业见习人员6人笔试备考题库及答案解析
- 2026北京市海淀区实验小学教育集团招聘笔试备考题库及答案解析
- 2026江苏南京大学XZ2026-021海外教育学院行政主管招聘笔试备考题库及答案解析
- 2026山东菏泽学院计算机学院诚聘高层次人才笔试备考题库及答案解析
- 2026年新广西安全员a证考试试题及答案
- 合同法讲座课件
- 2026年及未来5年市场数据中国多旋翼无人机行业市场全景调研及投资规划建议报告
- 扁鹊凹凸脉法课件
- 足浴店入股合同协议书
- JJF(石化) 001-2023 漆膜耐洗刷试验仪校准规范
- 【百思特】华为手机品牌变革历程研究白皮书
- 2025年湖南铁路科技职业技术学院单招职业技能测试题库及答案1套
- 加气站气瓶充装质量保证体系手册2024版
- Rexroth (博世力士乐)VFC 3610系列变频器使用说明书
- 住宅安装工程质量通病防治监理实施细则
评论
0/150
提交评论