河北省易县中学2025届数学高一下期末质量跟踪监视试题含解析_第1页
河北省易县中学2025届数学高一下期末质量跟踪监视试题含解析_第2页
河北省易县中学2025届数学高一下期末质量跟踪监视试题含解析_第3页
河北省易县中学2025届数学高一下期末质量跟踪监视试题含解析_第4页
河北省易县中学2025届数学高一下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省易县中学2025届数学高一下期末质量跟踪监视试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,若,共线,则实数()A. B. C. D.62.已知平面向量,的夹角为,,,则向的值为()A.-2 B. C.4 D.3.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.4.已知是第一象限角,那么是()A.第一象限角 B.第二象限角C.第一或第二象限角 D.第一或第三象限角5.若点共线,则的值为()A. B. C. D.6.已知变量与负相关,且由观测数据算得样本平均数,则由该观测数据算得的线性回归方程可能是A. B.C. D.7.已知,实数、满足关系式,若对于任意给定的,当在上变化时,的最小值为,则()A. B. C. D.8.若对任意的正数a,b满足,则的最小值为A.6 B.8 C.12 D.249.在△中,已知,,,则△的面积等于()A.6 B.12 C. D.10.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在的递减区间是__________12.在△ABC中,已知30,则B等于__________.13.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.14.终边在轴上的角的集合是_____________________.15.已知斜率为的直线的倾斜角为,则________.16.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为升;三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.下表中的数据是一次阶段性考试某班的数学、物理原始成绩:用这44人的两科成绩制作如下散点图:学号为22号的同学由于严重感冒导致物理考试发挥失常,学号为31号的同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将两同学的成绩(对应于图中两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩与物理成绩的相关系数为,回归直线(如图所示)的方程为.(1)若不剔除两同学的数据,用全部44人的成绩作回归分析,设数学成绩与物理成绩的相关系数为,回归直线为,试分析与的大小关系,并在图中画出回归直线的大致位置;(2)如果同学参加了这次物理考试,估计同学的物理分数(精确到个位);(3)就这次考试而言,学号为16号的同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式统一化成标准分再进行比较,其中为学科原始分,为学科平均分,为学科标准差).18.的内角的对边分别为.(1)求证:;(2)在边上取一点P,若.求证:.19.设向量,,其中.(1)若,求的值;(2)若,求的值.20.已知的内角A,B,C所对的边分别为a,b,c,其外接圆的面积为,且.(1)求边长c;(2)若的面积为,求的周长.21.已知函数.(1)求函数的值域和单调减区间;(2)已知为的三个内角,且,,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

利用向量平行的性质直接求解.【详解】向量,,共线,,解得实数.故选:.【点睛】本题主要考查向量平行的性质等基础知识,考查运算求解能力,是基础题.2、C【解析】

通过已知条件,利用向量的数量积化简求解即可.【详解】平面向量,的夹角为,或,则向量.故选:【点睛】本题考查向量数量积公式,属于基础题.3、C【解析】

根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.4、D【解析】

根据象限角写出的取值范围,讨论即可知在第一或第三象限角【详解】依题意得,则,当时,是第一象限角当时,是第三象限角【点睛】本题主要考查象限角,属于基础题.5、A【解析】

通过三点共线转化为向量共线,即可得到答案.【详解】由题意,可知,又,点共线,则,即,所以,故选A.【点睛】本题主要考查三点共线的条件,难度较小.6、D【解析】

由于变量与负相关,得回归直线的斜率为负数,再由回归直线经过样本点的中心,得到可能的回归直线方程.【详解】由于变量与负相关,排除A,B,把代入直线得:成立,所以在直线上,故选D.【点睛】本题考查回归直线斜率的正负、回归直线过样本点中心,考查基本数据处理能力.7、A【解析】

先计算出,然后利用基本不等式可得出的值.【详解】,由基本不等式得,当且仅当时,由于,即当时,等号成立,因此,,故选:A.【点睛】本题考查极限的计算,考查利用基本不等式求最值,解题的关键就是利用数列的极限计算出带的表达式,并利用基本不等式进行计算,考查运算求解能力,属于中等题.8、C【解析】

利用“1”的代换结合基本不等式求最值即可【详解】∵两个正数a,b满足即a+3b=1则=当且仅当时取等号.故选C【点睛】本题考查了基本不等式求最值,巧用“1”的代换是关键,属于基础题.9、C【解析】

通过A角的面积公式,代入数据易得面积.【详解】故选C【点睛】此题考查三角形的面积公式,代入数据即可,属于简单题目.10、B【解析】

利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【点睛】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数的性质得出结论.【详解】,由得,,时,.即所求减区间为.故答案为.【点睛】本题考查三角函数的单调性,解题时需把函数化为一个角一个三角函数形式,然后结合正弦函数的单调性求解.12、【解析】

根据三角形正弦定理得到角,再由三角形内角和关系得到结果.【详解】根据三角形的正弦定理得到,故得到角,当角时,有三角形内角和为,得到,当角时,角故答案为【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.13、【解析】

根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.14、【解析】

由于终边在y轴的非负半轴上的角的集合为而终边在y轴的非正半轴上的角的集合为,终边在轴上的角的集合是,所以,故答案为.15、【解析】

由直线的斜率公式可得=,分析可得,由同角三角函数的基本关系式计算可得答案.【详解】根据题意,直线的倾斜角为,其斜率为,则有=,则,必有,即,平方有:,得,故,解得或(舍).故答案为﹣【点睛】本题考查直线的倾斜角,涉及同角三角函数的基本关系式,属于基础题.16、【解析】试题分析:由题意可知,解得,所以.考点:等差数列通项公式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),理由见解析(2)81(3)【解析】

(1)不剔除两同学的数据,44个数据会使回归效果变差,从而得到,描出回归直线即可;(2)将x=125代入回归直线方程,即可得到答案;(3)利用题目给出的标准分计算公式进行计算即可得到结论.【详解】(1),说明理由可以是:①离群点A,B会降低变量间的线性关联程度;②44个数据点与回归直线的总偏差更大,回归效果更差,所以相关系数更小;③42个数据点与回归直线的总偏差更小,回归效果更好,所以相关系数更大;④42个数据点更加贴近回归直线;⑤44个数据点与回归直线更离散,或其他言之有理的理由均可.要点:直线斜率须大于0且小于的斜率,具体为止稍有出入没关系,无需说明理由.(2)令,代入得所以,估计同学的物理分数大约为分.(3)由表中知同学的数学原始分为122,物理原始分为82,数学标准分为物理标准分为,故同学物理成绩比数学成绩要好一些.【点睛】本题考查散点图和线性回归方程的简单应用,考查数据处理与数学应用能力.18、(1)详见解析;(2)详见解析.【解析】

(1)余弦定理的证明其实在课本就直接给出过它向量方法的证明,通过,等向量模长相等就可,当然我们还可以通过坐标的运算完成(如方法二)(2)通过点P,将三角形分割,这种题中多注意几个相等(公共边相等,)我们可以得到相对应的等量关系,完成本题.【详解】(1)证法一:如图,即证法二:已知中所对边分别为,以为原点,所在直线为轴建立直角坐标系,则,所以(2)令,由余弦定理得:,因为所以所以所以【点睛】(1)向量既有大小又有方向.在几何中是一种很重要的工具,比如三角形中,三边有大小,角度问题我们可以转化为向量夹角相关,所以很容易想到向量方法.(2)解组合三角形问题,多注重图形中一些恒等关系比如边长、角度问题.19、(1);(2)【解析】

(1)由向量垂直的坐标运算求出,再构造齐次式求解即可;(2)先由向量的模的运算求得,再由求解即可.【详解】解:(1)若,则,得,所以;(2)因为,,则,因为,所以,即,化简得,即,所以,因为,所以,则,所以,,所以,故.【点睛】本题考查了三角函数构造齐次式求值,重点考查了两角差的正弦公式及二倍角公式,属中档题.20、(1)(2)【解析】

(1)计算得到,,利用正弦定理计算得到答案.(2)根据余弦定理得到,根据面积公式得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论