版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省茂名市2025届高一下数学期末学业水平测试模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.对一切实数,不等式恒成立.则的取值范围是()A. B.C. D.2.已知:,则()A. B. C. D.3.在中,若为等边三角形(两点在两侧),则当四边形的面积最大时,()A. B. C. D.4.已知圆和两点,,.若圆上存在点,使得,则的最小值为()A. B. C. D.5.无论取何实数,直线恒过一定点,则该定点坐标为()A. B. C. D.6.若,则的坐标是()A. B. C. D.7.执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A.k>4? B.k>5? C.k>6? D.k>7?8.已知数列满足,,则()A.4 B.-4 C.8 D.-89.在中,内角所对的边分别为,且,,,则()A. B. C. D.10.设,则“”是“”的()A.充要条件 B.充分而不必要条件C.必要而不充分条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,且,则.12.函数的值域是________.13.已知数列的前项和为,,则__________.14.在等比数列中,已知,则=________________.15.如图,为了测量树木的高度,在处测得树顶的仰角为,在处测得树顶的仰角为,若米,则树高为______米.16.执行如图所示的程序框图,则输出的S的值是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的首项为,公差为,前n项和为,且满足,.(1)证明;(2)若,,当且仅当时,取得最小值,求首项的取值范围.18.设,若存在,使得,且对任意,均有(即是一个公差为的等差数列),则称数列是一个长度为的“弱等差数列”.(1)判断下列数列是否为“弱等差数列”,并说明理由.①1,3,5,7,9,11;②2,,,,.(2)证明:若,则数列为“弱等差数列”.(3)对任意给定的正整数,若,是否总存在正整数,使得等比数列:是一个长度为的“弱等差数列”?若存在,给出证明;若不存在,请说明理由19.如图1,已知菱形的对角线交于点,点为线段的中点,,,将三角形沿线段折起到的位置,,如图2所示.(Ⅰ)证明:平面平面;(Ⅱ)求三棱锥的体积.20.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.21.设公差不为0的等差数列中,,且构成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)若数列的前项和满足:,求数列的前项和.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
时,恒成立.时,原不等式等价于.由的最小值是2,可得,即.选A.2、A【解析】
观察已知角与待求的角之间的特殊关系,运用余弦的二倍角公式和诱导公式求解.【详解】令,则,所以,所以,故选A.【点睛】本题关键在于观察出已知角与待求的角之间的特殊关系,属于中档题.3、A【解析】
求出三角形的面积,求出四边形的面积,运用三角函数的恒等变换和正弦函数的值域,求出满足条件的角的值即可.【详解】设,,,是正三角形,,由余弦定理得:,,时,四边形的面积最大,此时.故选A.【点睛】本题考查余弦定理和三角形的面积公式,考查两角的和差公式和正弦函数的值域,考查化简运算能力,属于中档题.4、D【解析】
因为,所以点的轨迹为以为直径的圆,故点是两圆的交点,根据圆与圆的位置关系,即可求出.【详解】根据可知,点的轨迹为以为直径的圆,故点是圆和圆的交点,因此两圆相切或相交,即,亦即.故的最小值为.故选:D.【点睛】本题主要考查圆与圆的位置关系的应用,意在考查学生的转化能力,属于基础题.5、A【解析】
通过整理直线的形式,可求得所过的定点.【详解】直线可整理为,当,解得,无论为何值,直线总过定点.故选A.【点睛】本题考查了直线过定点问题,属于基础题型.6、C【解析】
,.故选C.7、B【解析】
分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S的值,条件框内的语句决定是否结束循环,模拟执行程序即可得到结果.【详解】程序在运行过程中各变量值变化如下:第一次循环k=2,S=2;是第二次循环k=3,S=7;是第三次循环k=4,S=18;是第四次循环k=5,S=41;是第五次循环=6,S=88;否故退出循环的条件应为k>5?,故选B.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8、C【解析】
根据递推公式,逐步计算,即可求出结果.【详解】因为数列满足,,所以,,.故选C【点睛】本题主要考查由递推公式求数列中的项,逐步代入即可,属于基础题型.9、C【解析】
直接利用余弦定理得到答案.【详解】故答案选C【点睛】本题考查了余弦定理,意在考查学生计算能力.10、C【解析】
首先解两个不等式,再根据充分、必要条件的知识选出正确选项.【详解】由解得.由得.所以“”是“”的必要而不充分条件故选:C【点睛】本小题主要考查充分、必要条件的判断,考查绝对值不等式的解法,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
∵在△ABC中,∠ABC=60°,且AB=5,AC=7,
∴由余弦定理,可得:,
∴整理可得:,解得:BC=8或−3(舍去).考点:1、正弦定理及余弦定理;2、三角形内角和定理及两角和的余弦公式.12、【解析】
求出函数在上的值域,根据原函数与反函数的关系即可求解.【详解】因为函数,当时是单调减函数当时,;当时,所以在上的值域为根据反函数的定义域就是原函数的值域可得函数的值域为故答案为:【点睛】本题求一个反三角函数的值域,着重考查了余弦函数的图像与性质和反函数的性质等知识,属于基础题.13、【解析】分析:由,当时,当时,相减可得,则,由此可以求出数列的通项公式详解:当时,当时由可得二式相减可得:又则数列是公比为的等比数列点睛:本题主要考查了等比数列的通项公式即数列递推式,在解答此类问题时看到,则用即可算出,需要注意讨论的情况。14、【解析】15、【解析】
先计算,再计算【详解】在处测得树顶的仰角为,在处测得树顶的仰角为则在中,故答案为【点睛】本题考查了三角函数的应用,也可以用正余弦定理解答.16、4【解析】
模拟程序运行,观察变量值的变化,寻找到规律周期性,确定输出结果.【详解】第1次循环:,;第2次循环:,;第3次循环:,;第4次循环:,;…;S关于i以4为周期,最后跳出循环时,此时.故答案为:4.【点睛】本题考查程序框图,考查循环结构.解题关键是由程序确定变量变化的规律:周期性.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解析】
(1)根据等差数列的前n项和公式,变形可证明为等差数列.结合条件,,可得,进而表示出.由为等差数列,表示出,化简变形后结合不等式性质即可证明.(2)将三角函数式分组,提公因式后结合同角三角函数关系式化简.再由平方差公式及正弦的和角与差角公式合并.根据条件等式,结合等差数列性质,即可求得.由,即可确定.当且仅当时,取得最小值,可得不等式组,即可得首项的取值范围.【详解】(1)证明:等差数列的前n项和为,则所以,,故为等差数列,因为,,所以,解得,因为,得故,从而.(2)而.由条件又由等差数列性质知:所以,因为,所以,那么.等差数列,当且仅当时,取得最小值.,所以.【点睛】本题考查了等差数列前n项和公式的应用,等差数列通项公式定义及变形式应用.三角函数式变形,正弦和角与差角公式的应用,不等式组的解法,综合性强,属于难题.18、(1)①是,②不是,理由见解析(2)证明见解析(3)存在,证明见解析【解析】
(1)①举出符合条件的具体例子即可;②反证法推出矛盾;
(2)根据题意找出符合条件的为等差数列即可;
(3)首先,根据,将公差表示出来,计算任意相邻两项的差值可以发现不大于.那么用裂项相消的方法表示出,结合相邻两项差值不大于可以得到,接下来,只需证明存在满足条件的即可.用和公差表示出,并展开可以发现多项式的最高次项为,而已知,因此在足够大时显然成立.结论得证.【详解】解:(1)数列①:1,3,5,7,9,11是“弱等差数列”
取分别为1,3,5,7,9,11,13即可;
数列②2,,,,不是“弱等差数列”
否则,若数列②为“弱等差数列”,则存在实数构成等差数列,设公差为,
,
,又与矛盾,所以数列②2,,,,不是“弱等差数列”;
(2)证明:设,
令,取,则,
则,
,
,
就有,命题成立.
故数列为“弱等差数列”;(3)若存在这样的正整数,使得
成立.
因为,,
则,其中待定.
从而,
又,∴当时,总成立.
如果取适当的,使得,又有
所以,有
,
为使得,需要,
上式左侧展开为关于的多项式,最高次项为,其次数为,
故,对于任意给定正整数,当充分大时,上述不等式总成立,即总存在满足条件的正整数,使得等比数列:是一个长度为的“弱等差数列”.【点睛】本题要求学生能够从已知分析出“弱等差数列”要想成立所应该具备的要求,进而进行推理,转化,最后进行验证,本题难度相当大.19、(Ⅰ)见证明;(Ⅱ)【解析】
(Ⅰ)折叠前,AC⊥DE;,从而折叠后,DE⊥PF,DE⊥CF,由此能证明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.说明四边形DEBC为平行四边形.可得CB∥DE.由此能证明平面PBC⊥平面PCF.(Ⅱ)由题意根据勾股定理运算得到,又由(Ⅰ)的结论得到,可得平面,再利用等体积转化有,计算结果.【详解】(Ⅰ)折叠前,因为四边形为菱形,所以;所以折叠后,,,又,平面,所以平面因为四边形为菱形,所以.又点为线段的中点,所以.所以四边形为平行四边形.所以.又平面,所以平面.因为平面,所以平面平面.(Ⅱ)图1中,由已知得,,所以图2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱锥的体积为.【点睛】本题考查线面垂直、面面垂直的证明,考查空间中线线、线面、面面间的位置关系等基础知识,考查了三棱锥体积的求法,运用了转化思想,是中档题.20、(1)见解析;(2)【解析】
(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果.【详解】(1)因为四边形是正方形,所以折起后,且,因为,所以是正三角形,所以.又因为正方形中,为的中点,所以,所以,所以,所以,又因为,所以平面.又平面,所以平面平面.(2)取中点,连结,,则,,又,则平面.又平面,所以平面平面.在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.在中,,,.∴,,故,,,∴,.设平面的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年司机竞聘面试高频考点专项训练题及答案
- 2026年银行内部控制制度题含答案
- 2026年助眠精神测试睡眠障碍心理诱因判断专项测评题及参考答案
- 2026年海关业务面试基础能力测试题及详解
- 2026年气瓶检验基础常识测验含答案
- 2026年农村社工师资格认证考试题库含答案
- 06年广东省中考英语二轮语法突破课件主谓一致
- 2026年新媒体内容编辑岗位笔试创意测试题及评析含答案
- 2026年大唐集团秋招综合能力测试题库含答案
- 2026年货物运输装载规范考试题含答案
- 2026届长春市第十一中学高二上数学期末调研模拟试题含解析
- 期末综合质量检测卷(试题)-2025-2026学年 六年级上册数学西师大版
- 乡村振兴课题申报书范例
- 汇能控股集团校招题库及答案
- 喷塑委外合同范本
- 物业管理法律法规与实务操作
- 高二化学上学期期末试题带答案解析
- 高标准农田建设培训课件
- 体检中心收费与财务一体化管理方案
- 解答题 概率与统计(专项训练12大题型+高分必刷)(原卷版)2026年高考数学一轮复习讲练测
- 2024-2025学年北京市海淀区第二十中学高二上学期期末物理试题(含答案)
评论
0/150
提交评论