2025届上海市浦东新区进才中学高一下数学期末复习检测模拟试题含解析_第1页
2025届上海市浦东新区进才中学高一下数学期末复习检测模拟试题含解析_第2页
2025届上海市浦东新区进才中学高一下数学期末复习检测模拟试题含解析_第3页
2025届上海市浦东新区进才中学高一下数学期末复习检测模拟试题含解析_第4页
2025届上海市浦东新区进才中学高一下数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届上海市浦东新区进才中学高一下数学期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.2.已知a,b,c满足,那么下列选项一定正确的是()A. B. C. D.3.已知向量满足.为坐标原点,.曲线,区域.若是两段分离的曲线,则()A. B. C. D.4.在中,A,B,C的对边分别为a,b,c,,则的形状一定是()A.直角三角形 B.等边三角形 C.等腰三角形 D.等腰直角三角形5.有一个容量为200的样本,样本数据分组为,,,,,其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间内的频数为()A.48 B.60 C.64 D.726.在中,角A,B,C所对的边分别为a,b,c,若,,则是()A.纯角三角形 B.等边三角形C.直角三角形 D.等腰直角三角形7.某社区义工队有24名成员,他们年龄的茎叶图如下表所示,先将他们按年龄从小到大编号为1至24号,再用系统抽样方法抽出6人组成一个工作小组,则这个小组年龄不超过55岁的人数为()3940112551366778889600123345A.1 B.2 C.3 D.48.“”是“函数的图像关于直线对称”的()条件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要9.已知为第二象限角,则所在的象限是()A.第一或第三象限 B.第一象限C.第二象限 D.第二或第三象限10.已知角的终边经过点,则=()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,为单位向量,且,若向量满足,则的最小值为_____.12.若点与关于直线对称,则的倾斜角为_______13.若、分别是方程的两个根,则______.14.已知圆的圆心在直线上,半径为,若圆上存在点,它到定点的距离与到原点的距离之比为,则圆心的纵坐标的取值范围是__________.15.函数的最小正周期为__________.16.设等比数列的公比,前项和为,则.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.年月日是第二十七届“世界水日”,月日是第三十二届“中国水周”.我国纪念年“世界水日”和“中国水周”活动的宣传主题为“坚持节水优先,强化水资源管理”.某中学课题小组抽取、两个小区各户家庭,记录他们月份的用水量(单位:)如下表:小区家庭月用水量小区家庭月用水量(1)根据两组数据完成下面的茎叶图,从茎叶图看,哪个小区居民节水意识更好?(2)从用水量不少于的家庭中,、两个小区各随机抽取一户,求小区家庭的用水量低于小区的概率.18.如图,在平面四边形ABCD中,,,,.(1)若点E为边CD上的动点,求的最小值;(2)若,,,求的值.19.如图,四边形是边长为2的正方形,为的中点,以为折痕把折起,使点到达点的位置,且.(1)求证:平面平面;(2)求二面角的余弦值.20.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.21.在平面直角坐标系中,已知点与两个定点,的距离之比为.(1)求点的坐标所满足的关系式;(2)求面积的最大值;(3)若恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【点睛】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.2、D【解析】

c<b<a,且ac<1,可得c<1且a>1.利用不等式的基本性质即可得出.【详解】∵c<b<a,且ac<1,∴c<1且a>1,b与1的大小关系不定.∴满足bc>ac,ac<ab,故选D.【点睛】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.3、A【解析】

不妨设,由得出点的坐标,根据题意得出曲线表示一个以为圆心,为半径的圆,区域表示以为圆心,内径为,外径为的圆环,再由是两段分离的曲线,结合圆与圆的位置关系得出的取值.【详解】不妨设则,所以,则曲线表示一个以为圆心,为半径的圆因为区域,所以区域表示以为圆心,内径为,外径为的圆环由于是两段分离的曲线,则该两段曲线分别为上图中的要使得是分离的曲线,则所在的圆与圆相交于不同的两点所以,即故选:A【点睛】本题主要考查了集合的应用以及由圆与圆的位置关系确定参数的范围,属于中档题.4、A【解析】

利用平方化倍角公式和边化角公式化简得到,结合三角形内角和定理化简得到,即可确定的形状.【详解】化简得即即是直角三角形故选A【点睛】本题考查了平方化倍角公式和正弦定理的边化角公式,在化简时,将边化为角,使边角混杂变统一,还有三角形内角和定理的运用,这一点往往容易忽略.5、B【解析】

由,求出,计算出数据落在区间内的频率,即可求解.【详解】由,解得,所以数据落在区间内的频率为,所以数据落在区间内的频数,故选B.【点睛】本题主要考查了频率分布直方图,频率、频数,属于中档题.6、B【解析】

利用正弦定理结合条件,得到,再由,结合余弦定理,得到,从而得到答案.【详解】在中,由正弦定理得,而,所以得到,即,为的内角,所以,因为,所以,由余弦定理得.为的内角,所以,所以,为等边三角形.故选:B.【点睛】本题考查正弦定理和余弦定理判断三角形形状,属于简单题.7、B【解析】

求出样本间隔,结合茎叶图求出年龄不超过55岁的有8人,然后进行计算即可.【详解】解:样本间隔为,年龄不超过55岁的有8人,则这个小组中年龄不超过55岁的人数为人.故选:.【点睛】本题主要考查茎叶图以及系统抽样的应用,求出样本间隔是解决本题的关键,属于基础题.8、A【解析】

根据充分必要条件的判定,即可得出结果.【详解】当时,是函数的对称轴,所以“”是“函数的图像关于直线对称”的充分条件,当函数的图像关于直线对称时,,推不出,所以“”是“函数的图像关于直线对称”的不必要条件,综上选.【点睛】本题主要考查了充分条件、必要条件,余弦函数的对称轴,属于中档题.9、A【解析】

用不等式表示第二象限角,再利用不等式的性质求出满足的不等式,从而确定角的终边在的象限.【详解】由已知为第二象限角,则则当时,此时在第一象限.当时,,此时在第三象限.故选:A【点睛】本题考查象限角的表示方法,不等式性质的应用,通过角满足的不等式,判断角的终边所在的象限.10、D【解析】试题分析:由题意可知x=-4,y=3,r=5,所以.故选D.考点:三角函数的概念.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

由题意设,,,由得出,它表示圆,由,利用向量的模的几何意义从而得到最小值.【详解】由题意设,,,因,即,所以,它表示圆心为,半径的圆,又,所以,而表示圆上的点与点的距离的平方,由,所以,故的最小值为.故答案为:.【点睛】本题考查了平面向量的数量积与应用问题,也考查了圆的方程与应用问题,属于中档题.12、【解析】

根据两点关于直线对称,可知与垂直,利用斜率乘积为可求得,根据直线倾斜角与斜率的关系可求得倾斜角.【详解】由题意知:,即:又本题正确结果:【点睛】本题考查直线倾斜角的求解,关键是能够根据两点关于直线对称的性质求得所求直线的斜率,再根据斜率与倾斜角的关系求得结果.13、【解析】

利用韦达定理可求出和的值,然后利用两角和的正切公式可计算出的值.【详解】由韦达定理得,,因此,.故答案为:.【点睛】本题考查利用两角和的正切公式求值,同时也考查了一元二次方程根与系数的关系,考查计算能力,属于基础题.14、【解析】因为圆心在直线上,设圆心,则圆的方程为,设点,因为,所以,化简得,即,所以点在以为圆心,为半径的圆上,则,即,整理得,由,得,由,得,所以圆心的纵坐标的取值范围是.点睛:本题主要考查了圆的方程,动点的轨迹方程、两圆的位置关系、解不等式等知识的综合运用,着重考查了转化与化归思想和学生的运算求解能力,解答中根据题设条件得到动点的轨迹方程,利用两圆的位置关系,列出不等式上解答的关键.对于直线与圆的位置关系问题,要熟记有关圆的性质,同时注意数形结合思想的灵活运用.15、【解析】

先将转化为余弦的二倍角公式,再用最小正周期公式求解.【详解】解:最小正周期为.故答案为【点睛】本题考查二倍角的余弦公式,和最小正周期公式.16、15【解析】分析:运用等比数列的前n项和公式与数列通项公式即可得出的值.详解:数列为等比数列,故答案为15.点睛:本题考查了等比数列的通项公式与前n项和公式,考查学生对基本概念的掌握能力与计算能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)根据表格中的数据绘制出茎叶图,并结合茎叶图中数据的分布可比较出两个小区居民节水意识;(2)列举出所有的基本事件,确定所有的基本事件数,然后确定事件“小区家庭的用水量低于小区”所包含的基本事件数,利用古典概型的概率公式可计算出事件“小区家庭的用水量低于小区”的概率.【详解】(1)绘制如下茎叶图:由以上茎叶图可以看出,小区月用水量有的叶集中在茎、上,而小区月用水量有的叶集中在茎、上,由此可看出小区居民节水意识更好;(2)从用水量不少于的家庭中,、两个小区各随机抽取一户的结果:、、、、、、、,共个基本事件,小区家庭的用水量低于小区的的结果:、、,共个基本事件.所以,小区家庭的用水量低于小区的概率是.【点睛】本题考查茎叶图的绘制与应用,以及利用古典概型计算事件的概率,考查收集数据与处理数据的能力,考查计算能力,属于中等题.18、(1);(2)【解析】

(1)建立平面直角坐标系,将范围问题转化为函数的最值问题,进而求解函数的最值即可;(2)根据、两点的位置,可以写出对应的坐标,从而在直角三角形中求得的正余弦,进而用余弦的和角公式进行求解.【详解】(1)设AC,BD相交于O,由于,所以,所以,因此,以DB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系如下图所示:故,,,.因为直线CD的方程为,所以可设.所以,.所以,当时,最小为.(2)因为,,所以,.因此,,.所以,.所以,.【点睛】本题考查利用向量解决几何问题,涉及范围问题的求解,属经典好题.19、(1)见解析;(2)【解析】

(1)先由线面垂直的判定定理得到平面,进而可得平面平面;(2)先取中点,连结,,证明平面平面,在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.分别求出两平面的法向量,求向量夹角余弦值,即可求出结果.【详解】(1)因为四边形是正方形,所以折起后,且,因为,所以是正三角形,所以.又因为正方形中,为的中点,所以,所以,所以,所以,又因为,所以平面.又平面,所以平面平面.(2)取中点,连结,,则,,又,则平面.又平面,所以平面平面.在平面内作于点,则平面.以点为原点,为轴,为轴,如图建立空间直角坐标系.在中,,,.∴,,故,,,∴,.设平面的一个法向量为,则由,得,令,得,,∴.因为平面的法向量为,则,又二面角为锐二面角,∴二面角的余弦值为.【点睛】本题主要考查面面垂直的判定,以及二面角的余弦值,熟记面面垂直的判定定理、以及二面角的向量求法即可,属于常考题型.20、(1);(2)或.【解析】

(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的斜率是否存在,根据点到直线的距离和勾股定理列式可得直线的倾斜角.【详解】(1)设圆的一般方程为,将点、、的坐标代入圆的方程得,解得,所以,圆的一般方程为,标准方程为;(2)设圆心到直线的距离为,则.①当直线的斜率不存在时,即直线到圆心的距离为,满足题意,此时直线的倾斜角为;②当直线的斜率存在时,设直线的方程为,即,则圆心到直线的距离为,解得,此时,直线的倾斜角为.综上所述,直线的倾斜角为或.【点睛】本题考查圆的方程的求解,同时也考查了利用直线截圆的弦长求直线的倾斜角,一般转化为求圆心到直线的距离,并结合点到直线的距离公式以及勾股定理列等式求解,考查计算能力,属中档题.21、(1)(2)3;(3)【解析】

(1)根据题意,结合两点间距离公式,可以得到等式,化简后得到点的坐标所满足的关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论