版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省酒泉地区瓜州一中2025届数学高一下期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知与之间的一组数据如表,若与的线性回归方程为,则的值为A.1 B.2 C.3 D.42.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:“一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯多少?”现有类似问题:一座5层塔共挂了363盏灯,且相邻两层中的下一层灯数是上一层灯数的3倍,则塔的底层共有灯A.81盏 B.112盏 C.162盏 D.243盏3.已知两个等差数列,的前项和分别为,,若对任意的正整数,都有,则等于()A.1 B. C. D.4.已知点在正所确定的平面上,且满足,则的面积与的面积之比为()A. B. C. D.5.已知,则().A. B. C. D.6.己知弧长的弧所对的圆心角为弧度,则这条弧所在的圆的半径为()A. B. C. D.7.已知数列,其前n项和为,且,则的值是()A.4 B.8 C.2 D.98.函数的图像()A.关于点对称 B.关于点对称C.关于直线对称 D.关于直线对称9.已知数列的前项和,那么()A.此数列一定是等差数列 B.此数列一定是等比数列C.此数列不是等差数列,就是等比数列 D.以上说法都不正确10.若,,,点C在AB上,且,设,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.过点作直线与圆相交,则在弦长为整数的所有直线中,等可能的任取一条直线,则弦长长度不超过14的概率为______________.12.已知平面向量,,满足:,且,则的最小值为____.13.向量满足:,与的夹角为,则=_____________;14.已知圆锥底面半径为1,高为,则该圆锥的侧面积为_____.15.将函数的图象上每一点的横坐标缩短为原来的一半,纵坐标不变;再向右平移个单位长度得到的图象,则_________.16.已知圆是圆上的一条动直径,点是直线上的动点,则的最小值是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设是等差数列,,且成等比数列.(1)求的通项公式;(2)记的前项和为,求的最小值.18.如图,在直三棱柱中,,,分别是,,的中点.(1)求证:平面;(2)若,求证:平面平面.19.已知点,求的边上的中线所在的直线方程.20.已知数列的前n项和为,,,.(1)求证:数列是等差数列;(2)令,数列的前n项和为,求证:.21.已知分别是的三个内角所对的边.(1)若的面积,求的值;(2)若,且,试判断的形状.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】
先求出样本中心点,代入回归直线方程,即可求得的值,得到答案.【详解】由题意,根据表中的数据,可得,又由回归直线方程过样本中心点,所以,解得,故选D.【点睛】本题主要考查了线性回归直线方程的应用,其中解答中熟记线性回归直线方程的基本特征是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解析】
从塔顶到塔底每层灯盏数可构成一个公比为3的等比数列,其和为1.由等比数列的知识可得.【详解】从塔顶到塔底每层灯盏数依次记为a1,a2,a3故选D.【点睛】本题考查等比数列的应用,解题关键是根据实际意义构造一个等比数列,把问题转化为等比数列的问题.3、B【解析】
利用等差数列的性质将化为同底的,再化简,将分子分母配凑成前n项和的形式,再利用题干条件,计算。【详解】∵等差数列,的前项和分别为,,对任意的正整数,都有,∴.故选B.【点睛】本题考查等差数列的性质的应用,属于中档题。4、C【解析】
根据向量满足的条件确定出P点的位置,再根据三角形有相同的底边,确定高的比即可求出结果.【详解】因为,所以,即点在边上,且,所以点到的距离等于点到距离的,故的面积与的面积之比为.选C.【点睛】本题主要考查了向量的线性运算,三角形的面积,属于中档题.5、A【解析】
.所以选A.【点睛】本题考查了二倍角及同角正余弦的差与积的关系,属于基础题.6、D【解析】
利用弧长公式列出方程直接求解,即可得到答案.【详解】由题意,弧长的弧所对的圆心角为2弧度,则,解得,故选D.【点睛】本题主要考查了圆的半径的求法,考查弧长公式等基础知识,考查了推理能力与计算能力,是基础题.7、A【解析】
根据求解.【详解】由题得.故选:A【点睛】本题主要考查数列和的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.8、B【解析】
根据关于点对称,关于直线对称来解题.【详解】解:令,得,所以对称点为.当,为,故B正确;令,则对称轴为,因此直线和均不是函数的对称轴.故选:B【点睛】本题主要考查正弦函数的对称性问题.正弦函数根据关于点对称,关于直线对称.9、D【解析】
利用即可求得:,当时,或,对赋值2,3,选择不同的递推关系可得数列:1,3,-3,…,问题得解.【详解】因为,当时,,解得,当时,,整理有,,所以或若时,满足,时,满足,可得数列:1,3,-3,…此数列既不是等差数列,也不是等比数列故选D【点睛】本题主要考查利用与的关系求,以及等差等比数列的判定.10、B【解析】
利用向量的数量积运算即可算出.【详解】解:,,又在上,故选:【点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
根据圆的性质可求得最长弦和最短弦的长度,从而得到所有弦长为整数的直线条数,从中找到长度不超过的直线条数,根据古典概型求得结果.【详解】由题意可知,最长弦为圆的直径:在圆内部且圆心到的距离为最短弦长为:弦长为整数的直线的条数有:条其中长度不超过的条数有:条所求概率:本题正确结果:【点睛】本题考查古典概型概率问题的求解,涉及到过圆内一点的最长弦和最短弦的长度的求解;易错点是忽略圆的对称性,造成在求解弦长为整数的直线的条数时出现丢根的情况.12、-1【解析】
,,,由经过向量运算得,知点在以为圆心,1为半径的圆上,这样,只要最小,就可化简.【详解】如图,,则,设是中点,则,∵,∴,即,,记,则点在以为圆心,1为半径的圆上,记,,注意到,因此当与反向时,最小,∴.∴最小值为-1.故答案为-1.【点睛】本题考查平面向量的数量积,解题关键是由已知得出点轨迹(让表示的有向线段的起点都是原点)是圆,然后分析出只有最小时,才可能最小.从而得到解题方法.13、【解析】
根据模的计算公式可直接求解.【详解】故填:.【点睛】本题考查了平面向量模的求法,属于基础题型.14、【解析】
由已知求得母线长,代入圆锥侧面积公式求解.【详解】由已知可得r=1,h=,则圆锥的母线长l=,∴圆锥的侧面积S=πrl=2π.故答案为:2π.【点睛】本题考查圆锥侧面积的求法,侧面积公式S=πrl.15、【解析】
由条件根据函数的图象变换规律,,可得的解析式,从而求得的值.【详解】将函数向左平移个单位长度可得的图象;保持纵坐标不变,横坐标伸长为原来的倍可得的图象,故,所以.【点睛】本题主要考查函数)的图象变换规律,属于中档题.16、【解析】
由题意得,==﹣=,即可求的最小值.【详解】圆,得,则圆心C(1,2),半径R=,如图可得:==﹣=,点是直线上,所以=()2=,∴的最小值是=.故答案为:.【点睛】本题考查了向量的数量积、转化和数形结合的思想,点到直线的距离,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用等差数列通项公式和等比数列的性质,列出方程求出,由此能求出的通项公式.(2)由,,求出的表达式,然后转化求解的最小值.【详解】解:(1)是等差数列,,且,,成等比数列.,,解得,.(2)由,,得:,或时,取最小值.【点睛】本题考查数列的通项公式、前项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.18、(1)详见解析(2)详见解析【解析】
(1)利用中位线定理可得∥,从而得证;(2)先证明,从而有平面,进而可得平面平面.【详解】(1)因为分别是的中点,所以∥.因为平面,平面,所以∥平面.(2)在直三棱柱中,平面,因为平面,所以.因为,且是的中点,所以.因为,平面,所以平面.因为平面,所以平面平面.【点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.19、【解析】
设边的中点,则由中点公式可得:,即点坐标为所以边上的中线先的斜率则由直线的斜截式方程可得:这就是所求的边上的中线所在的直线方程.20、(1)证明见解析;(2)证明见解析.【解析】
(1)根据和的关系式,利用,整理化简得到,从而证明是等差数列;(2)利用由(1)写出的通项,利用裂项相消法求出,从而证明【详解】(1)因为,所以当时,两式相减,得到,整理得,又因为,所以,所以数列是等差数列,公差为3;(2)当时,,解得或,因为,所以,由(1)可知,即公差,所以,所以,所以【点睛】本题考查根据与的关系证明等差数列,裂项相消
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 老年能力评估师培训
- 产业基金与PPP融资精要
- 《GB-T 37076-2018信息安全技术 指纹识别系统技术要求》专题研究报告
- 《GBT 34690.2-2017 印刷技术 胶印数字化过程控制 第 2 部分:作业环境》专题研究报告
- 《GBT 30457-2013灯用稀土紫外发射荧光粉试验方法》专题研究报告
- 企业年报信息编制咨询服务合同
- 中式面点师技师(高级)考试试卷及答案
- 助听器验配师技师(初级)考试试卷及答案
- 甲状腺切除护理查房
- PICC护理中的无菌操作
- 2025年10月自考04184线性代数经管类试题及答案含评分参考
- 国开2025年秋《心理学》形成性考核练习1-6答案
- 科技研发项目管理办法
- 个体诊所药品清单模板
- 267条表情猜成语【动画版】
- 地图文化第三讲古代测绘课件
- LY/T 2230-2013人造板防霉性能评价
- GB/T 34891-2017滚动轴承高碳铬轴承钢零件热处理技术条件
- 国家开放大学电大本科《理工英语4》2022-2023期末试题及答案(试卷号:1388)
- 突发公共卫生事件处置记录表
- 扑救初期火灾的程序和措施
评论
0/150
提交评论