2025届四川省仁寿县铧强中学高一数学第二学期期末学业质量监测模拟试题含解析_第1页
2025届四川省仁寿县铧强中学高一数学第二学期期末学业质量监测模拟试题含解析_第2页
2025届四川省仁寿县铧强中学高一数学第二学期期末学业质量监测模拟试题含解析_第3页
2025届四川省仁寿县铧强中学高一数学第二学期期末学业质量监测模拟试题含解析_第4页
2025届四川省仁寿县铧强中学高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届四川省仁寿县铧强中学高一数学第二学期期末学业质量监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列选项正确的是()A.若,则B.若,则C.若,则D.若,则2.若直线:与直线:垂直,则实数().A. B. C.2 D.或23.在△ABC中,若asinA+bsinB<csinC,则△ABC是()A.钝角三角形 B.直角三角形 C.锐角三角形 D.都有可能4.已知:平面内不再同一条直线上的四点、、、满足,若,则()A.1 B.2 C. D.5.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.6.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.7.已知平面向量的夹角为,且,则()A. B. C. D.8.函数的大致图象是()A. B.C. D.9.若经过两点、的直线的倾斜角为,则等于()A. B. C. D.10.若,且,则“”是“函数有零点”的(

)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.利用直线与圆的有关知识求函数的最小值为_______.12.若2弧度的圆心角所对的弧长为4cm,则这个圆心角所夹的扇形的面积是______.13._____________.14.已知三点、、共线,则a=_______.15.设函数的最小值为,则的取值范围是___________.16.数列是等比数列,,,则的值是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定点,点A在圆上运动,M是线段AB上的一点,且,求出点M所满足的方程,并说明方程所表示的曲线是什么.18.已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点.(Ⅰ)求证:PC∥平面EBD;(Ⅱ)求证:平面PBC⊥平面PCD.19.如图,函数,其中的图象与y轴交于点.(1)求的值;(2)求函数的单调递增区间;(3)求使的x的集合.20.的内角的对边为,(1)求;(2)若求.21.在平面直角坐标系中,的顶点、,边上的高线所在的直线方程为,边上的中线所在的直线方程为.(1)求点B到直线的距离;(2)求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

通过逐一判断ABCD选项,得到答案.【详解】对于A选项,若,代入,,故A错误;对于C选项,等价于,故C错误;对于D选项,若,则,故D错误,所以答案选B.【点睛】本题主要考查不等式的相关性质,难度不大.2、A【解析】试题分析:直线:与直线:垂直,则,.考点:直线与直线垂直的判定.3、A【解析】

由正弦定理化已知条件为边的关系,然后由余弦定理可判断角的大小.【详解】∵asinA+bsinB<csinC,∴,∴,∴为钝角.故选A.【点睛】本题考查正弦定理与余弦定理,考查三角形形状的判断,属于基础题.4、D【解析】

根据向量的加法原理对已知表示式转化为所需向量的运算对照向量的系数求解.【详解】根据向量的加法原理得所以,,解得且故选D.【点睛】本题考查向量的线性运算,属于基础题.5、B【解析】

先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.6、C【解析】

比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基本分析判断能力,属基础题7、B【解析】

将模平方后利用数量积的定义计算其结果,然后开根号得出的值.【详解】,因此,,故选B.【点睛】本题考查利用平面向量的数量积来求平面向量的模,通常利用平方法结合平面向量数量积的定义来进行求解,考查计算能力,属于中等题.8、C【解析】

去掉绝对值将函数化为分段函数的形式后可得其图象的大体形状.【详解】由题意得,所以其图象的大体形状如选项C所示.故选C.【点睛】解答本题的关键是去掉函数中的绝对值,将函数化为基本函数后再求解,属于基础题.9、D【解析】

由直线的倾斜角得知直线的斜率为,再利用斜率公式可求出的值.【详解】由于直线的倾斜角为,则该直线的斜率为,由斜率公式得,解得,故选D.【点睛】本题考查利用斜率公式求参数,同时也涉及了直线的倾斜角与斜率之间的关系,考查计算能力,属于基础题.10、A【解析】

结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【点睛】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

令得,转化为z==,再利用圆心到直线距离求最值即可【详解】令,则故转化为z==,表示上半个圆上的点到直线的距离的最小值的5倍,即故答案为3【点睛】本题考查直线与圆的位置关系,点到直线的距离公式,考查数形结合思想,是中档题12、【解析】

先求出扇形的半径,再求这个圆心角所夹的扇形的面积.【详解】设扇形的半径为R,由题得.所以扇形的面积为.故答案为:【点睛】本题主要考查扇形的半径和面积的计算,意在考查学生对这些知识的理解掌握水平.13、【解析】,故填.14、【解析】

由三点、、共线,则有,再利用向量共线的坐标运算即可得解.【详解】解:由、、,则,,又三点、、共线,则,则,解得:,故答案为:.【点睛】本题考查了向量共线的坐标运算,属基础题.15、.【解析】

确定函数的单调性,由单调性确定最小值.【详解】由题意在上是增函数,在上是减函数,又,∴,,故答案为.【点睛】本题考查分段函数的单调性.由单调性确定最小值,16、【解析】

由题得计算得解.【详解】由题得,所以.因为等比数列同号,所以.故答案为:【点睛】本题主要考查等比数列的性质和等比中项的应用,意在考查学生对这些知识的理解掌握水平.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、;方程所表示的曲线是以为圆心,为半径的圆.【解析】

设出点的坐标,结合向量的关系式及圆的方程可求.【详解】设,,因为,所以;,,因为点A在圆上运动,所以;化简得;方程所表示的曲线是以为圆心,为半径的圆.【点睛】本题主要考查曲线方程的求解,相关点法是常用的方法,侧重考查数学运算的核心素养.18、(Ⅰ)见解析(Ⅱ)见解析【解析】试题分析:(1)连,与交于,利用三角形的中位线,可得线线平行,从而可得线面平行;

(2)证明,即可证得平面平面.试题解析:(Ⅰ)连接AC交BD与O,连接EO,∵E、O分别为PA、AC的中点,∴EO∥PC,∵PC⊄平面EBD,EO⊂平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC⊂平面ABCD,∴PD⊥BC,∵ABCD为正方形,∴BC⊥CD,∵PD∩CD=D,PD、CD⊂平面PCD∴BC⊥平面PCD,又∵BC⊂平面PBC,∴平面PBC⊥平面PCD.【点睛】本题考查线面平行,考查面面平行,掌握线面平行,面面平行的判定方法是关键.19、(1),(2),,(3)【解析】

(1)由函数图像过定点,代入运算即可得解;(2)由三角函数的单调增区间的求法求解即可;(3)由,求解不等式即可得解.【详解】解:(1)因为函数图象过点,所以,即.因为,所以.(2)由(1)得,所以当,,即,时,是增函数,故的单调递增区间为,.(3)由,得,所以,,即,,所以时,x的集合为.【点睛】本题考查了利用函数图像的性质求解函数解析式,重点考查了三角函数单调区间的求法及解三角不等式,属基础题.20、(1);(2).【解析】

(1)由题目中告诉的,利用正弦定理则可得到,再结合余弦定理公式求出角的值.(2)根据第一问求得的的值和题目中告诉的角的值可求得角的值,再利用正弦定理可求得边和的值.【详解】(1)由正弦定理,得,由余弦定理,得,又所以.(2)由(1)知:,又所以,又,根据正弦定理,得,,所以【点睛】本题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论