南通市重点中学2025届高一下数学期末统考试题含解析_第1页
南通市重点中学2025届高一下数学期末统考试题含解析_第2页
南通市重点中学2025届高一下数学期末统考试题含解析_第3页
南通市重点中学2025届高一下数学期末统考试题含解析_第4页
南通市重点中学2025届高一下数学期末统考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南通市重点中学2025届高一下数学期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆,直线,点在直线上.若存在圆上的点,使得(为坐标原点),则的取值范围是A. B. C. D.2.已知,是两个不同的平面,给出下列四个条件:①存在一条直线,使得,;②存在两条平行直线,,使得,,,;③存在两条异面直线,,使得,,,;④存在一个平面,使得,.其中可以推出的条件个数是()A.1 B.2 C.3 D.43.在中,内角,,的对边分别为,,,且=.则A. B. C. D.4.已知球的直径SC=4,A,B是该球球面上的两点,AB=1.∠ASC=∠BSC=45°则棱锥S—ABC的体积为()A. B. C. D.5.执行下图所示的程序框图,若输出的,则输入的x为()A.0 B.1 C.0或1 D.0或e6.在中,“”是“”的()A.充要条件 B.必要不充分条件C.充分不必要条件 D.既不充分也不必要条件7.化简的结果是()A. B. C. D.8.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙下成平局的概率为()A.50% B.30% C.10% D.60%9.已知,则的最小值为A.3 B.4 C.5 D.610.某产品的广告费用(单位:万元)与销售额(单位:万元)的统计数据如下表:根据上表可得回归方程中的为9.4,据此模型预报广告费用为6万元时销售为()A.63.6万元 B.65.5万元C.67.7万元 D.72.0万元二、填空题:本大题共6小题,每小题5分,共30分。11.直线的倾斜角为_____________12.若直线与圆相交于,两点,且(其中为原点),则的值为________.13.数列定义为,则_______.14.已知数列满足:,,则使成立的的最大值为_______15.在中,角,,所对的边分别为,,,已知,,,则______.16.已知圆及点,若满足:存在圆C上的两点P和Q,使得,则实数m的取值范围是________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.做一个体积为,高为2m的长方体容器,问底面的长和宽分别为多少时,所用的材料表面积最少?并求出其最小值.18.已知函数(1)若,求函数的零点;(2)若在恒成立,求的取值范围;(3)设函数,解不等式.19.在△ABC中,a=7,b=8,cosB=–.(Ⅰ)求∠A;(Ⅱ)求AC边上的高.20.下表是某地一家超市在2018年一月份某一周内周2到周6的时间与每天获得的利润(单位:万元)的有关数据.星期星期2星期3星期4星期5星期6利润23569(1)根据上表提供的数据,用最小二乘法求线性回归直线方程;(2)估计星期日获得的利润为多少万元.参考公式:21.关于的不等式的解集为.(1)求实数的值;(2)若,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据条件若存在圆C上的点Q,使得为坐标原点),等价即可,求出不等式的解集即可得到的范围【详解】圆O外有一点P,圆上有一动点Q,在PQ与圆相切时取得最大值.

如果OP变长,那么可以获得的最大值将变小.可以得知,当,且PQ与圆相切时,,

而当时,Q在圆上任意移动,存在恒成立.

因此满足,就能保证一定存在点Q,使得,否则,这样的点Q是不存在的,

点在直线上,,即

,

,

计算得出,,

的取值范围是,

故选B.考点:正弦定理、直线与圆的位置关系.2、B【解析】当,不平行时,不存在直线与,都垂直,,,故正确;存在两条平行直线,,,,,,则,相交或平行,所以不正确;存在两条异面直线,,,,,,由面面平行的判定定理得,故正确;存在一个平面,使得,,则,相交或平行,所以不正确;故选3、C【解析】试题分析:由正弦定理得,,由于,,,故答案为C.考点:正弦定理的应用.4、C【解析】如图所示,由题意知,在棱锥SABC中,△SAC,△SBC都是等腰直角三角形,其中AB=1,SC=4,SA=AC=SB=BC=1.取SC的中点D,易证SC垂直于面ABD,因此棱锥SABC的体积为两个棱锥SABD和CABD的体积和,所以棱锥SABC的体积V=SC·S△ADB=×4×=.5、C【解析】

根据程序框图,分两种情况讨论,即可求得对应的的值.【详解】当输出结果为时.当,则,解得当,则,解得综上可知,输入的或故选:C【点睛】本题考查了程序框图的简单应用,指数方程与对数方程的解法,属于基础题.6、A【解析】

余弦函数在上单调递减【详解】因为A,B是的内角,所以,在上余弦函数单调递减,在中,“”“”【点睛】充要条件的判断,是高考常考知识点,充要条件的判断一般有三种思路:定义法、等价关系转化法、集合关系法。7、A【解析】

根据平面向量加法及数乘的几何意义,即可求解,得到答案.【详解】根据平面向量加法及数乘的几何意义,可得,故选A.【点睛】本题主要考查了平面向量的加法法则的应用,其中解答中熟记平面向量的加法法则是解答的关键,着重考查了推理与运算能力,属于基础题.8、A【解析】

甲不输的概率等于甲获胜或者平局的概率相加,计算得到答案.【详解】甲不输的概率等于甲获胜或者平局的概率相加甲、乙下成平局的概率为:故答案选A【点睛】本题考查了互斥事件的概率,意在考查学生对于概率的理解.9、C【解析】

由,得,则,利用基本不等式,即可求解.【详解】由题意,因为,则,所以,当且仅当时,即时取等号,所以的最小值为5,故选C.【点睛】本题主要考查了基本不等式的应用,其中解答中熟记基本不等式的使用条件,合理构造是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解析】

试题分析:,回归直线必过点,即.将其代入可得解得,所以回归方程为.当时,所以预报广告费用为6万元时销售额为65.5万元考点:回归方程二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

先求得直线的斜率,由此求得对应的倾斜角.【详解】依题意可知,直线的斜率为,故倾斜角为.故答案为:【点睛】本小题主要考查直线斜率和倾斜角的计算,属于基础题.12、【解析】

首先根据题意画出图形,再根据求出直线的倾斜角,求斜率即可.【详解】如图所示直线与圆恒过定点,不妨设,因为,所以,两种情况讨论,可得,.所以斜率.故答案为:【点睛】本题主要考查直线与圆的位置关系,同时考查了数形结合的思想,属于简单题.13、【解析】

由已知得两式,相减可发现原数列的奇数项和偶数项均为等差数列,分类讨论分别算出奇数项的和和偶数项的和,再相加得原数列前的和【详解】两式相减得数列的奇数项,偶数项分别成等差数列,,,,数列的前2n项中所有奇数项的和为:,数列的前2n项中所有偶数项的和为:【点睛】对于递推式为,其特点是隔项相减为常数,这种数列要分类讨论,分偶数项和奇数项来研究,特别注意偶数项的首项为,而奇数项的首项为.14、4【解析】

从得到关于的通项公式后可得的通项公式,解不等式后可得使成立的的最大值.【详解】易知为等差数列,首项为,公差为1,∴,∴,令,∴,∴.故答案为:4【点睛】本题考查等差数列的通项的求法及数列不等式的解,属于容易题.15、30°【解析】

直接利用正弦定理得到或,再利用大角对大边排除一个答案.【详解】即或,故,故故答案为【点睛】本题考查了正弦定理,没有利用大角对大边排除一个答案是容易发生的错误.16、【解析】

设出点P、Q的坐标,利用平面向量的坐标运算以及两圆相交的条件求出实数m的取值范围.【详解】设点,由得,由点在圆上,得,又在圆上,,与有交点,则,解得故实数m的取值范围为.故答案为:【点睛】本题考查了向量的坐标运算、利用圆与圆的位置关系求参数的取值范围,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、长和宽均为4m时,最小值为64【解析】

利用体积求得ab=16,只需表示出表面积,结合高为2m,利用基本不等式求出最值即可.【详解】设底面的长和宽分别为,因为体积为32,高为c=2m,所以底面积为16,即ab=16所用材料的面积S=2ab+2bc+2ca=32+4(a+b),当且仅当a=b=4时取等号,答:当底面的长和宽均为4m时,所用的材料表面积最少,其最小值为64【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.18、(1)1;(2)(3)见解析【解析】

(1)解方程可得零点;(2)恒成立,可分离参数得,这样只要求得在上的最大值即可;(3)注意到的定义域,不等式等价于,这样可根据与0,1的大小关系分类讨论.【详解】(1)当时,令得,,∵,∴函数的零点是1(2)在恒成立,即在恒成立,分离参数得:,∵,∴从而有:.(3)令,得,,因为函数的定义域为,所以等价于(1)当,即时,恒成立,原不等式的解集是(2)当,即时,原不等式的解集是(3)当,即时,原不等式的解集是(4)当,即时,原不等式的解集是综上所述:当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是当时,原不等式的解集是【点睛】本题考查函数的零点,考查不等式恒成立问题,考查解含参数的一元二次不等式.其中不等式恒成立问题可采用参数法转化为求函数的最值问题,而解一元二次不等式,必须对参数分类讨论,解题关键是确定分类标准.解一元二次不等式的分类标准有三个方面:一是二次的系数正负或者为0问题,二是一元二次方程的判别式的正负或0的问题,三是一元二次方程两根的大小关系.19、(1)∠A=(2)AC边上的高为【解析】分析:(1)先根据平方关系求,再根据正弦定理求,即得;(2)根据三角形面积公式两种表示形式列方程,再利用诱导公式以及两角和正弦公式求,解得边上的高.详解:解:(1)在△ABC中,∵cosB=–,∴B∈(,π),∴sinB=.由正弦定理得=,∴sinA=.∵B∈(,π),∴A∈(0,),∴∠A=.(2)在△ABC中,∵sinC=sin(A+B)=sinAcosB+sinBcosA==.如图所示,在△ABC中,∵sinC=,∴h==,∴AC边上的高为.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.20、见解析【解析】

(1)根据表中所给数据,求出横标的平均数,把求得的数据代入线性回归方程的系数公式,利用最小二乘法得到结果,写出线性回归方程。(2)根据二问求得的线性回归方程,代入所给的的值,预报出销售价格的估计值,这个数字不是一个准确数值。【详解】(1)由题意可得,,因此,,所以,-所以;(2)由(1)可得,当时,(万元),即星期日估计活动的利润为10.1万元。【点睛】关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论