版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河北省宣化市第一中学高一下数学期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.为了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为()A. B. C. D.2.点、、、在同一个球的球面上,,.若四面体的体积的最大值为,则这个球的表面积为()A. B. C. D.3.设变量、满足约束条件,则目标函数的最大值为()A.2 B.3 C.4 D.94.下列函数中同时具有性质:①最小正周期是,②图象关于点对称,③在上为减函数的是()A. B.C. D.5.设x、y满足约束条件,则z=2x﹣y的最大值为()A.0 B.0.5 C.1 D.26.已知某地区中小学生人数和近视情况分别如图1和图2所示,为了了解该地区中小学生的近视形成原因,按学段用分层抽样的方法抽取该地区的学生进行调查,则样本容量和抽取的初中生中近视人数分别为()A., B., C., D.,7.已知a、b、c分别是△ABC的内角A、B、C的对边,若,则的形状为()A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形8.计算的值为()A. B. C. D.9.设集合A={x|x≥–3},B={x|–3<x<1},则A∪B=()A.{x|x>–3} B.{x|x<1}C.{x|x≥–3} D.{x|–3≤x<1}10.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为()A.30° B.45° C.60° D.90°二、填空题:本大题共6小题,每小题5分,共30分。11.数列an满足12a112.如图,已知六棱锥的底面是正六边形,平面,,给出下列结论:①;②直线平面;③平面平面;④异面直线与所成角为;⑤直线与平面所成角的余弦值为.其中正确的有_______(把所有正确的序号都填上)13.已知数列是公差不为0的等差数列,,且成等比数列,则的前9项和_______.14.若八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的方差是______15.在中,已知,,,则角__________.16.设公比为q(q>0)的等比数列{an}的前n项和为{Sn}.若,,则q=______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在区间内随机取两个数,则关于的一元二次方程有实数根的概率为__________.18.某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(I)求应从小学、中学、大学中分别抽取的学校数目.(II)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,(1)列出所有可能的抽取结果;(2)求抽取的2所学校均为小学的概率.19.如图,在中,,D是BC边上的一点,,,.(1)求的大小;(2)求边的长.20.已知数列和中,数列的前n项和为,若点在函数的图象上,点在函数的图象上.设数列.(1)求数列的通项公式;(2)求数列的前项和;(3)求数列的最大值.21.在中,已知,是边上的一点,,,.(1)求的大小;(2)求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】试题分析:由题意知,分段间隔为,故选C.考点:本题考查系统抽样的定义,属于中等题.2、D【解析】
根据几何体的特征,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,可得与面垂直时体积最大,从而求出球的半径,即可求出球的表面积.【详解】根据题意知,、、三点均在球心的表面上,且,,,则的外接圆半径为,的面积为,小圆的圆心为,若四面体的体积取最大值,由于底面积不变,高最大时体积最大,所以,当与面垂直时体积最大,最大值为,,设球的半径为,则在直角中,,即,解得,因此,球的表面积为.故选:D.【点睛】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体体积取最大值,是解答的关键.3、D【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,把最优解的坐标代入目标函数得结论.【详解】画出满足约束条件的可行域,如图,画出可行域,,,,平移直线,由图可知,直线经过时目标函数有最大值,的最大值为9.故选D.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4、C【解析】
根据周期公式排除A选项;根据正弦函数的单调性,排除B选项;将代入函数解析式,排除D选项;根据周期公式,将代入函数解析式,余弦函数的单调性判断C选项正确.【详解】对于A项,,故A错误;对于B项,,,函数在上单调递增,则函数在上单调递增,故B错误;对于C项,;当时,,则其图象关于点对称;当,,函数在区间上单调递减,则函数在区间单调递减,故C正确;对于D项,当时,,故D错误;故选:C【点睛】本题主要考查了求正余弦函数的周期,单调性以及对称性的应用,属于中档题.5、C【解析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】由约束条件作出可行域如图,联立,解得A(2,3),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过A时,直线在y轴上的截距最小,z有最大值为2×2﹣3=1.故选:C.【点评】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.6、A【解析】
根据分层抽样的定义建立比例关系即可得到结论。【详解】由图1得样本容量为,抽取的初中生人数为人,则初中生近视人数为人,故选.【点睛】本题主要考查分层抽样的应用。7、A【解析】
将原式进行变形,再利用内角和定理转化,最后可得角B的范围,可得三角形形状.【详解】因为在三角形中,变形为由内角和定理可得化简可得:所以所以三角形为钝角三角形故选A【点睛】本题考查了解三角形,主要是公式的变形是解题的关键,属于较为基础题.8、D【解析】
直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.9、C【解析】
根据并集的运算律可计算出集合A∪B.【详解】∵A=xx≥-3,B=x故选:C.【点睛】本题考查集合的并集运算,解题的关键就是并集运算律的应用,考查计算能力,属于基础题.10、C【解析】连接,由三角形中位线定理及平行四边形性质可得,所以是与所成角,由正方体的性质可知是等边三角形,所以,与所成角是,故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、14,n=1【解析】
试题分析:这类问题类似于Sn=f(an)的问题处理方法,在12a1+122a2+...+1.考点:数列的通项公式.12、①③④⑤【解析】
设出几何体的边长,根据正六边形的性质,线面垂直的判定定理,线面平行的判定定理,面面垂直的判定定理,异面直线所成角,线面角有关知识,对五个结论逐一分析,由此得出正确结论的序号.【详解】设正六边形长为,则.根据正六边形的几何性质可知,由平面得,所以平面,所以,故①正确.由于,而,所以直线平面不正确,故②错误.易证得,所以平面,所以平面平面,故③正确.由于,所以是异面直线与所成角,在中,,故,也即异面直线与所成角为,故④正确.连接,则,由①证明过程可知平面,所以平面,所以是所求线面角,在三角形中,,由余弦定理得,故⑤正确.综上所述,正确的序号为①③④⑤.【点睛】本小题主要考查线面垂直的判定,面面垂直的判定,考查线线角、线面角的求法,属于中档题.13、117【解析】
由成等比数列求出公差,由前项公式求和.【详解】设数列是公差为,则,由成等比数列得,解得,∴.故答案为:117.【点睛】本题考查等差数列的前项和公式,考查等比数列的性质.解题关键是求出数列的公差.14、1.1【解析】
先求出这组数据的平均数,由此能求出这组数据的方差.【详解】八个学生参加合唱比赛的得分为87,88,90,91,92,93,93,94,则这组数据的平均数为:(87+88+90+91+92+93+93+94)=91,∴这组数据的方差为:S2[(87﹣91)2+(88﹣91)2+(90﹣91)2+(91﹣91)2+(92﹣91)2+(93﹣91)2+(93﹣91)2+(94﹣91)2]=1.1.故答案为1.1.【点睛】本题考查方差的求法,考查平均数、方差的性质等基础知识,考查了推理能力与计算能力,是基础题.15、【解析】
先由正弦定理得到角A的大小,再由三角形内角和为得到结果.【详解】根据三角形正弦定理得到:,故得到或,因为故得到故答案为.【点睛】在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说,当条件中同时出现及、时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.16、【解析】将,两个式子全部转化成用,q表示的式子.即,两式作差得:,即:,解之得:(舍去)三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】试题分析:解:在平面直角坐标系中,以轴和轴分别表示的值,因为m、n是中任意取的两个数,所以点与右图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域.设事件表示方程有实根,则事件,所对应的区域为图中的阴影部分,且阴影部分的面积为.故由几何概型公式得,即关于的一元二次方程有实根的概率为.考点:本题主要考查几何概型概率的计算.点评:几何概型概率的计算,关键是明确基本事件空间及发生事件的几何度量,有面积、体积、角度数、线段长度等.本题涉及到了线性规划问题中平面区域.18、(1)3,2,1(2)【解析】(1)从小学、中学、大学中分别抽取的学校数目为3、2、1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为{A1,A2},{A1,A3},{A2,A3},共3种.所以P(B)=315=119、(1)(2)【解析】
(1)在中,由余弦定理运算即可;(2)在中,由正弦定理运算即可.【详解】解:(1)在中,,,,由余弦定理可得,又,即;(2)由(1)得,在中,,,由正弦定理可得:,即.【点睛】本题考查了正弦定理、余弦定理的应用,属基础题.20、(1)(2)(3)【解析】
(1)先根据题设知,再利用求得,验证符合,最后答案可得.
(2)由题设可知,把代入,然后用错位相减法求和;(3)计算,判断其大于零时的范围,可得数列取最大值时的项数,进而可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医院感染管理培训与防控
- 医疗机构人力资源发展战略
- 企业采购管理制度
- 2026年智能折叠天幕电机项目投资计划书
- 标准作业安全培训课件
- 医疗物联网设备与网络安全
- 中医针灸操作规程讲解
- 主任讲解泌尿外科微创手术进展
- 查验接种工作培训课件
- 医疗健康大数据在传染病科中的应用
- 2025年济宁职业技术学院毛泽东思想和中国特色社会主义理论体系概论期末考试模拟题必考题
- 委托作品协议书
- m的认主协议书
- 2025年及未来5年市场数据中国机电安装工程市场调查研究及行业投资潜力预测报告
- kv高压线防护施工方案
- 住建局执法证考试题库及答案2025
- 主管护师聘任述职报告
- AI搜索时代:从GEO到AIBE的品牌新蓝图
- 产品知识培训会议总结
- 专题11 圆(安徽专用)5年(2021-2025)中考1年模拟《数学》真题分类汇编
- 工程春节停复工方案(3篇)
评论
0/150
提交评论