版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省景东县第二中学2025届高一下数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”。如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A.48 B.36 C.24 D.122.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,这三天中恰有两天下雨的概率近似为A.0.35 B.0.25 C.0.20 D.0.153.米勒问题,是指德国数学家米勒1471年向诺德尔教授提出的有趣问题:在地球表面的什么部位,一根垂直的悬杆呈现最长(即可见角最大?)米勒问题的数学模型如下:如图,设是锐角的一边上的两定点,点是边边上的一动点,则当且仅当的外接圆与边相切时,最大.若,点在轴上,则当最大时,点的坐标为()A. B.C. D.4.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是()A.若α∥β,mα,nβ,则m∥n B.若α⊥β,mα,则m⊥βC.若α⊥β,mα,nβ,则m⊥n D.若α∥β,mα,则m∥β5.已知数列满足,为其前项和,则不等式的的最大值为()A.7 B.8 C.9 D.106.在等差数列中,,则等于()A.5 B.6 C.7 D.87.在中,,,则的形状是()A.钝角三角形 B.锐角三角形 C.直角三角形 D.不能确定8.设为所在平面内一点,若,则下列关系中正确的是()A. B.C. D.9.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A. B. C. D.10.已知向量,且,则的值是()A. B. C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若直线上存在满足以下条件的点:过点作圆的两条切线(切点分别为),四边形的面积等于,则实数的取值范围是_______12.弧度制是数学上一种度量角的单位制,数学家欧拉在他的著作《无穷小分析概论》中提出把圆的半径作为弧长的度量单位.已知一个扇形的弧长等于其半径长,则该扇形圆心角的弧度数是__________.13.已知,若角的终边经过点,求的值.14.已知不等式x2-x-a>0的解集为x|x>3或15.已知向量,,若与共线,则实数________.16.已知,,若,则实数_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,求阴影部分绕旋转一周所形成的几何体的表面积和体积.18.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.19.2019年4月23日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了100名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,按阅读时间分组:第一组[0,5),第二组[5,10),第三组[10,15),第四组[15,20),第五组[20,25],绘制了频率分布直方图如下图所示.已知第三组的频数是第五组频数的3倍.(1)求的值,并根据频率分布直方图估计该校学生一周课外阅读时间的平均值;(2)现从第三、四、五这3组中用分层抽样的方法抽取6人参加校“中华诗词比赛”.经过比赛后,从这6人中随机挑选2人组成该校代表队,求这2人来自不同组别的概率.20.设甲、乙、丙三个乒乓球协会分别选派3,1,2名运动员参加某次比赛,甲协会运动员编号分别为,,,乙协会编号为,丙协会编号分别为,,若从这6名运动员中随机抽取2名参加双打比赛.(1)用所给编号列出所有可能抽取的结果;(2)求丙协会至少有一名运动员参加双打比赛的概率;(3)求参加双打比赛的两名运动员来自同一协会的概率.21.的内角的对边分别为,已知.(1)求;(2)若为锐角三角形,且,求面积的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】
由开始,按照框图,依次求出s,进行判断。【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键。2、B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数,∴所求概率为=0.1.故选B3、A【解析】
设点的坐标为,求出线段的中垂线与线段的中垂线交点的横坐标,即可得到的外接圆圆心的横坐标,由的外接圆与边相切于点,可知的外接圆圆心的横坐标与点的横坐标相等,即可得到点的坐标.【详解】由于点是边边上的一动点,且点在轴上,故设点的坐标为;由于,则直线的方程为:,点为直线与轴的交点,故点的坐标为;由于为锐角,点是边边上的一动点,故;所以线段的中垂线方程为:;线段的中垂线方程为:;故的外接圆的圆心为直线与直线的交点,联立,解得:;即的外接圆圆心的横坐标为的外接圆与边相切于点,边在轴上,则的外接圆圆心的横坐标与点的横坐标相等,即,解得:或(舍)所以点的坐标为;故答案选A【点睛】本题考查直线方程、三角形外接圆圆心的求解,属于中档题4、D【解析】
在中,与平行或异面;在中,与相交、平行或;在中,与相交、平行或异面;在中,由线面平行的性质定理得.【详解】由,是两条不同的直线,,是两个不同的平面,知:在中,若,,,则与平行或异面,故错误;在中,若,,则与相交、平行或,故错误;在中,若,,,则与相交、平行或异面,故错误;在中,若,,则由线面平行的性质定理得,故正确.故选.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,属于中档题.5、B【解析】
由题意,整理得出是一个首项为12,公比为的等比数列,从而求出,再求出其前项和,然后再求出的表达式,再代入数验证出的最大值即可.【详解】由可得,即,所以数列是等比数列,又,所以,故,解得,(),所以的最大值为8.选B.【点睛】本题考查数列的递推式以及数列求和的方法分组求和,属于数列中的综合题,考查了转化的思想,构造的意识,本题难度较大,思维能力要求高.6、C【解析】
由数列为等差数列,当时,有,代入求解即可.【详解】解:因为数列为等差数列,又,则,又,则,故选:C.【点睛】本题考查了等差数列的性质,属基础题.7、C【解析】
利用余弦定理求出,再利用余弦定理求得的值,即可判断三角形的形状.【详解】在中,,解得:;∵,∵,,∴是直角三角形.故选:C.【点睛】本题考查余弦定理的应用、三角形形状的判定,考查逻辑推理能力和运算求解能力.8、A【解析】
∵∴−=3(−);∴=−.故选A.9、D【解析】
由题意,男生30人,女生20人,按照分层抽样方法从中抽取5人,则男生为人,女生为,从这5人中随机选取2人,共有种,全是女生的只有1种,所以至少有1名女生的概率为,故选D.10、A【解析】
由已知求得,然后展开两角差的正切求解.【详解】解:由,且,得,即.,故选A.【点睛】本题考查数量积的坐标运算,考查两角差的正切,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
通过画出图形,可计算出圆心到直线的最短距离,建立不等式即可得到的取值范围.【详解】作出图形,由题意可知,,此时,四边形即为,而,故,勾股定理可知,而要是得存在点P满足该条件,只需O到直线的距离不大于即可,即,所以,故的取值范围是.【点睛】本题主要考查直线与圆的位置关系,点到直线的距离公式,意在考查学生的转化能力,计算能力,分析能力,难度中等.12、1【解析】设扇形的弧长和半径长为,由弧度制的定义可得,该扇形圆心角的弧度数是.13、【解析】
由条件利用任意角的三角函数的定义,求得和的值,从而可得的值.【详解】因为角的终边经过点,所以,,则.故答案为:【点睛】本题主要考查任意角的三角函数的定义,属于基础题.14、6【解析】
由题意可知-2,3为方程x2【详解】由题意可知-2,3为方程x2-x-a=0的两根,则-2×3=-a,即故答案为:6【点睛】本题主要考查一元二次不等式的解,意在考查学生对该知识的理解掌握水平,属于基础题.15、【解析】
根据平面向量的共线定理与坐标表示,列方程求出x的值.【详解】向量(3,﹣1),(x,2),若与共线,则3×2﹣(﹣1)•x=0,解得x=﹣1.故答案为﹣1.【点睛】本题考查了平面向量的共线定理与坐标表示的应用问题,是基础题.16、【解析】
利用平面向量垂直的数量积关系可得,再利用数量积的坐标运算可得:,解方程即可.【详解】因为,所以,整理得:,解得:【点睛】本题主要考查了平面向量垂直的坐标关系及方程思想,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解析】
由图形知旋转后的几何体是一个圆台,从上面挖去一个半球后剩余部分,根据图形中的数据可求出其表面积和体积.【详解】由题意知,所求旋转体的表面积由三部分组成:圆台下底面、侧面和一个半球面,而半球面的表面积,圆台的底面积,圆台的侧面积,所以所求几何体的表面积;圆台的体积,半球的体积,所以,旋转体的体积为,故得解.【点睛】本题考查组合体的表面积、体积,还考查了空间想象能力,能想象出旋转后的旋转体的构成是本题的关键,属于中档题.18、(1)(2)符合【解析】
:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为,则所求的概率为.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:.故此方案符合国家“保基本”政策.【点睛】本题考查了古典概型在实际生活中的应用,要紧扣题意从题目中抽象出数学计算的模型.19、(1)a=0.06,平均值为12.25小时(2)【解析】
(1)由频率分布直方图可得第三组和第五组的频率之和,第三组的频率,由此能求出a和该样本数据的平均数,从而可估计该校学生一周课外阅读时间的平均值;(2)从第3、4、5组抽取的人数分别为3、2、1,设为A,B,C,D,E,F,利用列举法能求出从该6人中选拔2人,从而得到这2人来自不同组别的概率.【详解】(1)由频率分布直方图可得第三组和第五组的频率之和为,第三组的频率为∴该样本数据的平均数所以可估计该校学生一周课外阅读时间的平均值为小时.(2)易得从第3、4、5组抽取的人数分别为3、2、1,设为,则从该6人中选拔2人的基本事件有:共15种,其中来自不同的组别的基本事件有:,共11种,∴这2人来自不同组别的概率为.【点睛】本题考查平均数、概率的求法,考查古典概型、频率分布直方图等基础知识,考查运算求解能力,是基础题.20、(1)15种;(2);(3)【解析】
(1)从这6名运动员中随机抽取2名参加双打比赛,利用列举法即可得到所有可能的结果.(2利用列举法得到“丙协会至少有一名运动员参加双打比赛”的基本事件的个数,利用古典概型,即可求解;(3)由两名运动员来自同一协会有,,,,共4种,利用古典概型,即可求解.【详解】(1)由题意,从这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年数据分析师面试考核内容及参考答案
- 2026年电商运营必看网店运营主管面试问题及参考答案
- 2026年金融行业市场专员面试题及解析
- 2026年用友管理咨询顾问面试题集及答案解析
- 2026年软件开发工程师面试问题解析及参考答案
- 2026年凭祥市应急管理局招聘编外人员招聘备考题库及1套完整答案详解
- 2026年造价工程师考试复习资料含答案
- 2026年风险评估与防范考试题
- 2026年汽车维修技师故障诊断题库含答案
- 2026年电商行业运营总监面试常见问题及答案
- 矿业企业精益管理实施方案与案例
- 音乐与乐器的声学原理
- 《网络与信息安全管理员》三级考试题库(含答案)-20230926094641
- JSA临时用电作业安全分析表
- 内镜室医生护士职责
- 2023年新高考I卷英语试题讲评课件-2024届高考英语一轮复习
- 2015-2022年北京卫生职业学院高职单招语文/数学/英语笔试参考题库含答案解析
- 提高铝模板施工质量合格率
- MT/T 106-1996顺槽用刮板转载机通用技术条件
- GB/T 6672-2001塑料薄膜和薄片厚度测定机械测量法
- GB/T 4139-2012钒铁
评论
0/150
提交评论