版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省乌江中学2025届高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,则向量在向量方向上的投影为()A. B. C.-1 D.12.对于任意实数,下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则3.已知函数满足下列条件:①定义域为;②当时;③.若关于x的方程恰有3个实数解,则实数k的取值范围是A. B. C. D.4.已知实数满足,则的最大值为()A. B. C. D.5.设是定义在上的偶函数,若当时,,则()A. B. C. D.6.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.7.已知中,,,若,则的坐标为()A. B. C. D.8.某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,则恰好抽到2幅不同种类的概率为()A. B. C. D.9.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.10.若关于的方程,当时总有4个解,则可以是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.如图中,,,,M为AB边上的动点,,D为垂足,则的最小值为______;12.已知圆锥的轴截面是边长为2的正三角形,则这个圆锥的表面积等于______.13.在中,,,,则的面积是__________.14.函数在的值域是______________.15.若无穷数列的所有项都是正数,且满足,则______.16.三棱锥中,分别为的中点,记三棱锥的体积为,的体积为,则____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,,且向量与的夹角为.(1)若,求;(2)若与垂直,求.18.四棱锥中,,,底面,,直线与底面所成的角为,、分别是、的中点.(1)求证:直线平面;(2)若,求证:直线平面;(3)求棱锥的体积.19.(1)已知,求的值(2)若,,且,,求的值20.从含有两件正品和一件次品的三件产品中,每次任取一件,每次取出后不放回,连续取两次,求:(1)一切可能的结果组成的基本事件空间.(2)取出的两件产品中恰有一件次品的概率21.如图,在平面四边形中,,,,,.(1)求的长;(2)求的长.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据投影的定义和向量的数量积求解即可.【详解】解:∵,,∴向量在向量方向上的投影,故选:A.【点睛】本题主要考查向量的数量积的定义及其坐标运算,属于基础题.2、C【解析】
根据是任意实数,逐一对选项进行分析即得。【详解】由题,当时,,则A错误;当,时,,则B错误;可知,则有,因此C正确;当时,有,可知C错误.故选:C【点睛】本题考查判断正确命题,是基础题。3、D【解析】
分析:先根据条件确定函数图像,再根据过定点(1,0)的直线与图像关系确定实数k的取值范围.详解:因为,当时;所以可作函数在上图像,如图,而直线过定点A(1,0),根据图像可得恰有3个实数解时实数k的取值范围为,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.4、A【解析】
由原式,明显考查斜率的几何意义,故上下同除以得,再画图分析求得的取值范围,再用基本不等式求解即可.【详解】所求式,上下同除以得,又的几何意义为圆上任意一点到定点的斜率,由图可得,当过的直线与圆相切时取得临界条件.当过坐标为时相切为一个临界条件,另一临界条件设,化成一般式得,因为圆与直线相切,故圆心到直线的距离,所以,,解得,故.设,则,又,故,当时取等号.故,故选A.【点睛】本题主要考查斜率的几何意义,基本不等式的用法等.注意求斜率时需要设点斜式,利用圆心到直线的距离等于半径列式求得斜率,在用基本不等式时要注意取等号的条件.5、A【解析】
利用函数的为偶函数,可得,代入解析式即可求解.【详解】是定义在上的偶函数,则,又当时,,所以.故选:A【点睛】本题考查了利用函数的奇偶性求函数值,属于基础题.6、C【解析】
根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.7、A【解析】
根据,,可得;由可得M为BC中点,即可求得的坐标,进而利用即可求解.【详解】因为,所以因为,即M为BC中点所以所以所以选A【点睛】本题考查了向量的减法运算和线性运算,向量的坐标运算,属于基础题.8、B【解析】
算出基本事件的总数和随机事件中基本事件的个数,利用古典概型的概率的计算公式可求概率.【详解】设为“恰好抽到2幅不同种类”某学校美术室收藏有6幅国画,分别为人物、山水、花鸟各2幅,现从中随机抽取2幅进行展览,基本事件总数,恰好抽到2幅不同种类包含的基本事件个数,则恰好抽到2幅不同种类的概率为.故选B.【点睛】计算出所有的基本事件的总数及随机事件中含有的基本事件的个数,利用古典概型的概率计算即可.计数时应该利用排列组合的方法.9、C【解析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.10、D【解析】
根据函数的解析式,写出与的解析式,再判断对应方程在时解的个数.【详解】对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时有2个解,当时有3个解,当时有4个解,不符合;对,,,;方程,当时有4个解,当时有3个解,当时有2个解,不符合;对,,,;方程,当时恒有4个解,符合题意.【点睛】本题考查了函数与方程的应用问题,考查数形结合思想的运用,对综合能力的要求较高.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
以为坐标原点建立平面直角坐标系,用坐标表示出的值,然后利用换元法求解出对应的最小值即可.【详解】如图所示,设,所以,根据条件可知:,所以,设,,,所以,所以,所以,所以当时,有最小值,最小值为.故答案为:.【点睛】本题考查利用坐标法以及换元法求解最值,着重考查逻辑推理和运算求解的能力,属于较难题(1)利用换元法求解最值时注意,换元后新元的取值范围;(2)三角函数中的一组“万能公式”:,.12、【解析】
根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的表面积公式,能求出结果.【详解】∵圆锥的轴截面是正三角形,边长等于2∴圆锥的高,底面半径.∴这个圆锥的表面积:.故答案为.【点睛】本题给出圆锥轴截面的形状,求圆锥的表面积,着重考查了等边三角形的性质和圆锥的轴截面等基础知识,考查运算求解能力,是基础题.13、【解析】
计算,等腰三角形计算面积,作底边上的高,计算得到答案.【详解】,过C作于D,则故答案为【点睛】本题考查了三角形面积计算,属于简单题.14、【解析】
利用,即可得出.【详解】解:由已知,,又
,
故答案为:.【点睛】本题考查了反三角函数的求值、单调性,考查了推理能力与计算能力,属于中档题.15、【解析】
先由作差法求出数列的通项公式为,即可计算出,然后利用常用数列的极限即可计算出的值.【详解】当时,,可得;当时,由,可得,上式下式得,得,也适合,则,.所以,.因此,.故答案为:.【点睛】本题考查利用作差法求数列通项,同时也考查了数列极限的计算,考查计算能力,属于中等题.16、【解析】
由已知设点到平面距离为,则点到平面距离为,所以,考点:几何体的体积.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)根据平面向量的数量积公式计算的值;(2)根据两向量垂直数量积为0,列方程求出cosθ的值和对应角θ的值.【详解】(1)因为,所以(2)因为与垂直,所以即,所以又,所以【点睛】本题考查了平面向量的数量积与模长和夹角的计算问题,是基础题.18、(1)见解析(2)见解析(3)【解析】
(1)由中位线定理可得,,再根据平行公理可得,,即可根据线面平行的判定定理证出;(2)根据题意可计算出,而是的中点,可得,又,即可根据线面垂直的判定定理证出;(3)根据等积法,即可求出.【详解】(1)证明:连接,,,、是、中点,,从而.又平面,平面,直线平面;(2)证明:,,.底面,直线与底面成角,..是的中点,.,.面,面,直线平面;(3)由题可知,,.【点睛】本题主要考查线面平行的判定定理,线面垂直的判定定理的应用,以及利用等积法求三棱锥的体积,意在考查学生的直观想象能力,逻辑推理能力和转化能力,属于基础题.19、(1);(2).【解析】
(1)利用诱导公式化简可得:原式,再分子、分母同除以可得:原式,将代入计算得解.(2)将整理为:,利用两角差的正弦公式整理得:,根据已知求出、即可得解.【详解】解:(1)原式;(2)因为,,所以.又因为,所以,所以.于是.【点睛】本题主要考查了诱导公式及转化思想,还考查了两角差的正弦公式及同角三角函数基本关系,考查计算能力,属于中档题.20、(1)和;(2)【解析】
(1)注意先后顺序以及是不放回的抽取;(2)在所有可能的事件中寻找符合要求的事件,然后利用古典概型概率计算公式求解即可.【详解】(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即和其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品(2)用A表示“取出的两种中,恰好有一件次品”这一事件,则∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫星结构全面解析
- 2025年企业消防安全事故案例汇编
- 供应商管理制度
- 公共交通车辆清洁消毒制度
- 超市员工培训及心理辅导制度
- Unit 2 Stay Healthy Section A 知识清单 2025-2026学年人教版八年级英语下册
- 中国热带农业科学院香料饮料研究所2026年第一批公开招聘工作人员备考题库完整答案详解
- 2026年苏州市医疗保险研究会人员招聘备考题库及一套完整答案详解
- 养老院收费标准及退费制度
- 2026年数智备考题库设计师、系统运维工程师招聘备考题库附答案详解
- 2026年中国热带农业科学院橡胶研究所高层次人才引进备考题库含答案详解
- 2025-2026学年四年级英语上册期末试题卷(含听力音频)
- 2026届川庆钻探工程限公司高校毕业生春季招聘10人易考易错模拟试题(共500题)试卷后附参考答案
- 2026年广西出版传媒集团有限公司招聘(98人)考试参考题库及答案解析
- 医源性早发性卵巢功能不全临床治疗与管理指南(2025版)
- 甘肃省平凉市(2025年)辅警协警笔试笔试真题(附答案)
- 中国双相障碍防治指南(2025版)
- 医疗卫生政策与规划制定
- 中国中央企业高层管理者面试问题
- 港口安全生产管理课件
- 2025年色母料项目发展计划
评论
0/150
提交评论