2025届山西省吕梁市临县第一中学高一数学第二学期期末学业质量监测试题含解析_第1页
2025届山西省吕梁市临县第一中学高一数学第二学期期末学业质量监测试题含解析_第2页
2025届山西省吕梁市临县第一中学高一数学第二学期期末学业质量监测试题含解析_第3页
2025届山西省吕梁市临县第一中学高一数学第二学期期末学业质量监测试题含解析_第4页
2025届山西省吕梁市临县第一中学高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届山西省吕梁市临县第一中学高一数学第二学期期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知扇形的半径为,圆心角为,则该扇形的面积为()A. B. C. D.2.已知正实数满足,则的最大值为()A.2 B. C.3 D.3.正方体中,直线与所成角的余弦值为()A. B. C. D.4.已知命题,则命题的否定为()A. B.C. D.5.设集合,,则()A. B. C. D.6.在直角坐标系中,已知点,则的面积为()A. B.4 C. D.87.在正三棱锥中,,则侧棱与底面所成角的正弦值为()A. B. C. D.8.下列四组中的函数,表示同一个函数的是()A., B.,C., D.,9.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件 B.B和C为互斥事件C.C与D是对立事件 D.B与D为互斥事件10.方程的解所在的区间为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,面积为,则________.12.方程,的解集是__________.13.正项等比数列中,,,则公比__________.14.已知数列满足,,,则__________.15.若方程表示圆,则实数的取值范围是______.16.函数单调递减区间是.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了了解某市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:,并绘制出频率分布直方图,如图所示.(1)求频率分布直方图中的值,并估计该市高中学生的平均成绩;(2)设、、、四名学生的考试成绩在区间内,、两名学生的考试成绩在区间内,现从这6名学生中任选两人参加座谈会,求学生、至少有一人被选中的概率.18.设函数.(1)求函数的单调递减区间;(2)若,求函数的值域.19.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.20.如图,在直角梯形中,,,,,记,.(1)用,表示和;(2)求的值.21.已知关于的不等式的解集为.(1)求的值;(2)求函数的最小值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

化圆心角为弧度值,再由扇形面积公式求解即可.【详解】扇形的半径为,圆心角为,即,该扇形的面积为,故选.【点睛】本题主要考查扇形的面积公式的应用.2、B【解析】

由,然后由基本不等式可得最大值.【详解】,当且仅当,即时,等号成立.∴所求最大值为.故选:B.【点睛】本题考查用基本不等式求最值,注意基本不等式求最值的条件:一正二定三相等.3、C【解析】

作出相关图形,通过平行将异面直线所成角转化为共面直线所成角.【详解】作出相关图形,由于,所以直线与所成角即为直线与所成角,由于为等边三角形,于是所成角余弦值为,故答案选C.【点睛】本题主要考查异面直线所成角的余弦值,难度不大.4、C【解析】

根据全称命题的否定是特称命题,可直接得出结果.【详解】命题“”的否定是“”.故选C【点睛】本题主要考查全称命题的否定,只需改量词和结论即可,属于基础题型.5、D【解析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.6、B【解析】

求出直线AB的方程及点C到直线AB的距离d,再求出,代入即可得解.【详解】,即,点到直线的距离,,的面积为:.故选:B【点睛】本题考查直线的点斜式方程,点到直线的距离与两点之间的距离公式,属于基础题.7、B【解析】

利用正三棱锥的性质,作出侧棱与底面所成角,利用直角三角形进行计算.【详解】连接P与底面正△ABC的中心O,因为是正三棱锥,所以面,所以为侧棱与底面所成角,因为,所以,所以,故选B.【点睛】本题考查线面角的计算,考查空间想象能力、逻辑推理能力及计算求解能力,属于中档题.8、A【解析】

分别判断两个函数的定义域和对应法则是否相同即可.【详解】.的定义域为,,两个函数的定义域相同,对应法则相同,所以,表示同一个函数..的定义域为,,两个函数的定义域相同,对应法则不相同,所以,不能表示同一个函数..的定义域为,的定义域为,两个函数的定义域不相同,所以,不能表示同一个函数..的定义域为,的定义域,两个函数的定义域不相同,对应法则相同,所以,不能表示同一个函数.故选.【点睛】本题主要考查判断两个函数是否为同一函数,判断的依据主要是判断两个函数的定义域和对应法则是否相同即可.9、D【解析】

根据互斥事件和对立事件的概念,进行判定,即可求解,得到答案.【详解】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.【点睛】本题主要考查了互斥事件和对立事件的概念及判定,其中解答中熟记互斥事件和对立事件的概念,准确判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、B【解析】试题分析:由题意得,设函数,则,所以,所以方程的解所在的区间为,故选B.考点:函数的零点.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

由已知利用三角形面积公式可求c,进而利用余弦定理可求a的值,根据正弦定理即可计算求解.【详解】,,面积为,解得,由余弦定理可得:,所以,故答案为:【点睛】本题主要考查了三角形面积公式,余弦定理,正弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.12、【解析】

用正弦的二倍角公式展开,得到,分两种情况讨论得出结果.【详解】解:即,即:或.①由,,得.②由,,得或.综上可得方程,的解集是:故答案为【点睛】本题考查正弦函数的二倍角公式,以及特殊角的正余弦值.13、【解析】

根据题意,由等比数列的性质可得,进而分析可得答案.【详解】根据题意,等比数列中,,则,又由数列是正项的等比数列,所以.【点睛】本题主要考查了等比数列的通项公式的应用,其中解答中熟记等比数列的通项公式,以及注意数列是正项等比数列是解答的关键,着重考查了推理与运算能力,属于基础题.14、-2【解析】

根据题干中所给的表达式得到数列的周期性,进而得到结果.【详解】根据题干表达式得到可以得数列具有周期性,周期为3,故得到故得到故答案为:-2.【点睛】这个题目考查了求数列中的某些项,一般方法是求出数列通项,对于数列通项不容易求的题目,可以列出数列的一些项,得到数列的周期或者一些其它规律,进而得到数列中的项.15、.【解析】

把圆的一般方程化为圆的标准方程,得出表示圆的条件,即可求解,得到答案.【详解】由题意,方程可化为,方程表示圆,则满足,解得.【点睛】本题主要考查了圆的一般方程与圆的标准方程的应用,其中熟记圆的一般方程与圆的标准方程的互化是解答的关键,着重考查了推理与运算能力,属于基础.16、【解析】

先求出函数的定义域,找出内外函数,根据同增异减即可求出.【详解】由,解得或,所以函数的定义域为.令,则函数在上单调递减,在上单调递增,又为增函数,则根据同增异减得,函数单调递减区间为.【点睛】复合函数法:复合函数的单调性规律是“同则增,异则减”,即与若具有相同的单调性,则为增函数,若具有不同的单调性,则必为减函数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由频率分布直方图能求出a.由此能估计该市高中学生的平均成绩;(2)现从这6名学生中任选两人参加座谈会,求出基本事件总数,再学生M、N至少有一人被选中包含的基本事件个数,由此能求出学生M、N至少有一人被选中的概率.【详解】(1)由频率分布直方图得:,∴估计该市高中学生的平均成绩为:.(2)设A、B、C、D四名学生的考试成绩在区间[80,90)内,M、N两名学生的考试成绩在区间[60,70)内,现从这6名学生中任选两人参加座谈会,基本事件总数,学生M、N至少有一人被选中包含的基本事件个数,∴学生M、N至少有一人被选中的概率.【点睛】本题考查了利用频率分布直方图求平均数,考查了古典概型计算公式,考查了数学运算能力.18、(1);(2).【解析】分析:(1)由二倍角公式将表达式化一得到,,令,得到单调区间;(2)时,,根据第一问的表达式得到值域.详解:(1)由令得:所以,函数的单调减区间为(2)当时,所以,函数的值域是:.点睛:本题求最值利用三角函数辅助角公式将函数化为的形式,利用三角函数的图像特点得到函数的值域.19、(1),,(2)猜想:,证明见解析【解析】

(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【点睛】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题20、(1),;(2)1【解析】

(1)根据向量的线性运算可直接求解得到结果;(2)将所求数量积转化为,根据数量积运算性质求得结果.【详解】(1),(2)由(1)得:【点睛】本题考查利用基底表示向

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论