版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市陵城一中2025届高一下数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知在中,两直角边,,是内一点,且,设,则()A. B. C.3 D.2.设点M是直线上的一个动点,M的横坐标为,若在圆上存在点N,使得,则的取值范围是()A. B. C. D.3.已知数列中,,,且,则的值为()A. B. C. D.4.已知向量,且为正实数,若满足,则的最小值为()A. B. C. D.5.过点且与圆相切的直线方程为()A. B.或C.或 D.或6.设等比数列的公比,前n项和为,则()A.2 B.4 C. D.7.设,为两个平面,则能断定∥的条件是()A.内有无数条直线与平行 B.,平行于同一条直线C.,垂直于同一条直线 D.,垂直于同一平面8.圆的圆心坐标和半径分别为()A. B. C. D.9.若对任意,不等式恒成立,则a的取值范围为()A. B. C. D.10.已知平面向量,,若与同向,则实数的值是()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.将边长为2的正沿边上的高折成直二面角,则三棱锥的外接球的表面积为.12.某学校成立了数学,英语,音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图.现随机选取一个成员,他恰好只属于2个小组的概率是____.13.如图,边长为2的菱形的对角线相交于点,点在线段上运动,若,则的最小值为_______.14.已知腰长为的等腰直角△中,为斜边的中点,点为该平面内一动点,若,则的最小值________.15.已知等差数列的公差为,且,其前项和为,若满足,,成等比数列,且,则______,______.16.方程的解集是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在等差数列{}中,=3,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,.(1)求与的通项公式;(2)设数列{}满足,求{}的前n项和.18.已知扇形的半径为3,面积为9,则该扇形的弧长为___________.19.在数1和100之间插入个实数,使得这个数构成递增的等比数列,将这个数的乘积记作,再令.(Ⅰ)求数列的通项公式;(Ⅱ)设,求数列的前项和.20.已知平面向量满足:(1)求与的夹角;(2)求向量在向量上的投影.21.已知圆C过点,且圆心C在直线上.(1)求圆C的标准方程;(2)若过点(2,3)的直线被圆C所截得的弦的长是,求直线的方程.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:建立平面直角坐标系,分别写出B、C点坐标,由于∠DAB=60°,设D点坐标为(m,),由平面向量坐标表示,可求出λ和μ.详解:如图以A为原点,以AB所在的直线为x轴,以AC所在的直线为y轴建立平面直角坐标系,则B点坐标为(1,0),C点坐标为(0,2),因为∠DAB=60°,设D点坐标为(m,),=λ(1,0)+μ(0,2)=(λ,2μ)⇒λ=m,μ=,则.故选A.点睛:本题主要考察平面向量的坐标表示,根据条件建立平面直角坐标系,分别写出各点坐标,属于中档题.2、D【解析】
由题意画出图形,根据直线与圆的位置关系可得相切,设切点为P,数形结合找出M点满足|MP|≤|OP|的范围,从而得到答案.【详解】由题意可知直线与圆相切,如图,设直线x+y−2=0与圆相切于点P,要使在圆上存在点N,使得,使得最大值大于或等于时一定存在点N,使得,而当MN与圆相切时,此时|MP|取得最大值,则有|MP|≤|OP|才能满足题意,图中只有在M1、M2之间才可满足,∴的取值范围是[0,2].故选:D.【点睛】本题考查直线与圆的位置关系,根据数形结合思想,画图进行分析可得,属于中等题.3、A【解析】
由递推关系,结合,,可求得,,的值,可得数列是一个周期为6的周期数列,进而可求的值。【详解】因为,由,,得;由,,得;由,,得;由,,得;由,,得;由,,得由此推理可得数列是一个周期为6的周期数列,所以,故选A。【点睛】本题考查由递推关系求数列中的项,考查数列周期的判断,属基础题。4、A【解析】
根据向量的数量积结合基本不等式即可.【详解】由题意得,因为,为正实数,则当且仅当时取等.所以选择A【点睛】本题主要考查了向量的数量积以及基本不等式,在用基本不等式时要满足一正二定三相等.属于中等题5、C【解析】
分别考虑斜率存在和不存在两种情况得到答案.【详解】如图所示:当斜率不存在时:当斜率存在时:设故答案选C【点睛】本题考查了圆的切线问题,忽略掉斜率不存在是容易发生的错误.6、D【解析】
设首项为,利用等比数列的求和公式与通项公式求解即可.【详解】设首项为,因为等比数列的公比,所以,故选:D.【点睛】本题主要考查等比数列的求和公式与通项公式,熟练掌握基本公式是解题的关键,属于基础题.7、C【解析】
对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别为A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.8、B【解析】
根据圆的标准方程形式直接确定出圆心和半径.【详解】因为圆的方程为:,所以圆心为,半径,故选:B.【点睛】本题考查给定圆的方程判断圆心和半径,难度较易.圆的标准方程为,其中圆心是,半径是.9、D【解析】
对任意,不等式恒成立,即恒成立,代入计算得到答案.【详解】对任意,不等式恒成立即恒成立故答案为D【点睛】本题考查了不等式恒成立问题,意在考查学生的计算能力和解决问题的能力.10、D【解析】
通过同向向量的性质即可得到答案.【详解】与同向,,解得或(舍去),故选D.【点睛】本题主要考查平行向量的坐标运算,但注意同向,难度较小.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
解:根据题意可知三棱锥B﹣ACD的三条侧棱BD、DC、DA两两互相垂直,所以它的外接球就是它扩展为长方体的外接球,∵长方体的对角线的长为:,∴球的直径是,半径为,∴三棱锥B﹣ACD的外接球的表面积为:4π5π.故答案为5π考点:外接球.12、【解析】
由题中数据,确定课外小组的总人数,以及恰好属于2个小组的人数,人数比即为所求概率.【详解】由题意可得,课外小组的总人数为,恰好属于2个小组的人数为,所以随机选取一个成员,他恰好只属于2个小组的概率是.故答案为【点睛】本题主要考查古典概型,熟记列举法求古典概型的概率即可,属于常考题型.13、【解析】
以为原点建立平面直角坐标系,利用计算出两点的坐标,设出点坐标,由此计算出的表达式,,进而求得最值.【详解】以为原点建立平面直角坐标系如下图所示,设,则①,由得②,由①②解得,故.设,则,当时取得最小值为.故填:.【点睛】本小题主要考查平面向量的坐标运算,考查向量数量积的坐标表示以及数量积求最值,考查二次函数的性质,考查数形结合的数学思想方法,属于中档题.14、【解析】
如图建立平面直角坐标系,∴,当sin时,得到最小值为,故选.15、2【解析】
由,可求出,再由,,成等比数列,可建立关系式,求出,进而求出即可.【详解】由,可知,即,又,,成等比数列,所以,则,即,解得或,因为,所以,,所以.故答案为:2;.【点睛】本题考查等比数列的性质,考查等差数列前项和的求法,考查学生的计算求解能力,属于基础题.16、或【解析】
方程的根等价于或,分别求两个三角方程的根可得答案.【详解】方程或,所以或,所以或.故答案为:或.【点睛】本题考查三角方程的求解,求解时可利用单位圆中的三角函数线,注意终边相同角的表示,考查运算求解能力和数形结合思想的运用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2).【解析】
(1)根据等差数列{}中,=1,其前项和为,等比数列{}的各项均为正数,=1,公比为q,且b2+S2=12,,设出基本元素,得到其通项公式;(2)由于,所以,那么利用裂项求和可以得到结论.【详解】(1)设:{}的公差为,因为,所以,解得=1或=-4(舍),=1.故,;(2)因为故.本题主要是考查了等差数列和等比数列的通项公式和前n项和,以及数列求和的综合运用.18、6【解析】
直接利用扇形的面积公式,即可得到本题答案.【详解】因为扇形的半径,扇形的面积,由,得,所以该扇形的弧长为6.故答案为:6【点睛】本题主要考查扇形的面积公式的应用.19、(Ⅰ)(Ⅱ)【解析】
(1)类比等差数列求和的倒序相加法,将等比数列前n项积倒序相乘,可求,代入即可求解.(2)由(1)知,利用两角差的正切公式,化简,,得,再根据裂项相消法,即可求解.【详解】(Ⅰ)由题意,构成递增的等比数列,其中,则①②①②,并利用等比数列性质,得(Ⅱ)由(Ⅰ)知,又所以数列的前项和为【点睛】(Ⅰ)类比等差数列,利用等比数列的相关性质,推导等比数列前项积公式,创新应用型题;(Ⅱ)由两角差的正切公式,推导连续两个自然数的正切之差,构造新型的裂项相消的式子,创新应用型题;本题属于难题.20、(1);(2).【解析】
(1)由题,先求得的大小,再根据数量积的公式,可得与的夹角;(2)先求得的模长,再直接利用向量几何意义的公式,求得结果即可.【详解】(1)∵,∴,又∵,∴,∴,∴(2)∵,∴∴向量在向量上的投影为【点睛】本题考查了向量的知识,熟悉向量数量积的知识点和几何意义是解题的关键所在,属于中档题.21、(1);(2)或.【解析】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 深度解析(2026)《GBT 33411-2025酶联免疫分析试剂盒通则》
- 2026届高三生物二轮复习课件:大单元2 细胞的生存需要能量和营养物质 层级1 主干知识落实清单
- Unit 1 Section A(2a2e) 七年级英语上册(人教版2024)
- 医疗数据安全治理区块链化的政策法规风险
- 医疗数据安全技术在医疗检验数据管理中的应用
- 医疗数据安全成熟度:区块链全球视野
- 医疗数据安全应急演练的场景驱动型设计方法
- 医疗数据安全共享的区块链激励生态演化
- 胆小鬼课件教学课件
- 医疗数据安全人才案例库建设课程
- 养老事业与养老产业协同发展路径探析
- 建筑施工项目职业病危害防治措施方案
- 袖阀注浆管施工方案
- 重症医学科抗生素应用规范
- 2025新人教版初中英语八年级上全册课文翻译(精校打印)
- SCI审稿人回复课件
- 2025年轨道交通牵引变流器行业研究报告及未来发展趋势预测
- 园林研学课件
- TCAOE 76-2024 海藻场生态修复与效果评估技术指南
- 致远互联协同oa系统固定资产管理解决方案
- 快消品包装2025:绿色包装与产品生命周期评价体系
评论
0/150
提交评论