河南省封丘县第一中学2025届高一下数学期末预测试题含解析_第1页
河南省封丘县第一中学2025届高一下数学期末预测试题含解析_第2页
河南省封丘县第一中学2025届高一下数学期末预测试题含解析_第3页
河南省封丘县第一中学2025届高一下数学期末预测试题含解析_第4页
河南省封丘县第一中学2025届高一下数学期末预测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省封丘县第一中学2025届高一下数学期末预测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过,两点的直线方程为()A. B. C. D.2.在数列an中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量OA、OB、OC满足OC=a1A.1005 B.1006 C.2010 D.20123.若长方体三个面的面积分别为2,3,6,则此长方体的外接球的表面积等于()A. B. C. D.4.已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.5.同时抛掷两个骰子,则向上的点数之和是的概率是()A. B. C. D.6.若,则下列不等式成立的是()A. B.C. D.7.经过平面外一点和平面内一点与平面垂直的平面有()A.1个 B.2个 C.无数个 D.1个或无数个8.设函数的图象分别向左平移m(m>0)个单位,向右平移n(n>0>个单位,所得到的两个图象都与函数的图象重合的最小值为()A. B. C. D.9.给出下列命题:(1)存在实数使.(2)直线是函数图象的一条对称轴.(3)的值域是.(4)若都是第一象限角,且,则.其中正确命题的题号为()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)10.在中,点满足,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.为等比数列,若,则_______.12.已知实数,是与的等比中项,则的最小值是______.13.空间两点,间的距离为_____.14.函数的反函数为____________.15.在正数数列an中,a1=1,且点an,an-116.如图所示,隔河可以看到对岸两目标,但不能到达,现在岸边取相距的两点,测得(在同一平面内),则两目标间的距离为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足,令(1)求证数列为等比数列,并求通项公式;(2)求数列的前n项和.18.已知不共线的向量,,,.(1)求与的夹角的余弦值;(2)求.19.已知函数,(1)若,求a的值,并判断的奇偶性;(2)求不等式的解集.20.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生的原始成绩均分布在内,发布成绩使用等级制.各等级划分标准见下表.规定:三级为合格等级,D为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了名学生的原始成绩作为样本进行统计.按照的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示.(I)求和频率分布直方图中的的值,并估计该校高一年级学生成绩是合格等级的概率;(II)在选取的样本中,从两个等级的学生中随机抽取2名学生进行调研,求至少有一名学生是等级的概率.21.如图所示,已知的斜边长,现以斜边横在直线为轴旋转一周,得到旋转体.(1)当时,求此旋转体的体积;(2)比较当,时,两个旋转体表面积的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】

根据题目条件,选择两点式来求直线方程.【详解】由两点式直线方程可得:化简得:故选:C【点睛】本题主要考查了直线方程的求法,还考查了运算求解的能力,属于基础题.2、A【解析】

利用等差数列的定义可知数列an为等差数列,由向量中三点共线的结论得出a1+【详解】∵an+1=an∵三点A、B、C共线且该直线不过O点,OC=a1因此,S2010故选:A.【点睛】本题考查等差数列求和,涉及等差数列的定义以及向量中三点共线结论的应用,考查计算能力,属于中等题.3、C【解析】

设长方体过一个顶点的三条棱长分别为,,,由已知面积求得,,的值,得到长方体对角线长,进一步得到外接球的半径,则答案可求.【详解】设长方体过一个顶点的三条棱长分别为,,,则,解得,,.长方体的对角线长为.则长方体的外接球的半径为,此长方体的外接球的表面积等于.故选:C.【点睛】本题考查长方体外接球表面积的求法,考查空间想象能力和运算求解能力,求解时注意长方体的对角线长为长方体外接球的直径.4、B【解析】

首先根据两点都在角的终边上,得到,利用,利用倍角公式以及余弦函数的定义式,求得,从而得到,再结合,从而得到,从而确定选项.【详解】由三点共线,从而得到,因为,解得,即,所以,故选B.【点睛】该题考查的是有关角的终边上点的纵坐标的差值的问题,涉及到的知识点有共线的点的坐标的关系,余弦的倍角公式,余弦函数的定义式,根据题中的条件,得到相应的等量关系式,从而求得结果.5、C【解析】

由题意可知,基本事件总数为,然后列举出事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件,利用古典概型的概率公式可计算出所求事件的概率.【详解】同时抛掷两个骰子,共有个基本事件,事件“同时抛掷两个骰子,向上的点数之和是”所包含的基本事件有:、、、、,共个基本事件.因此,所求事件的概率为.故选:C.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.6、B【解析】

利用不等式的性质,进行判断即可.【详解】因为,故由均值不等式可知:;因为,故;因为,故;综上所述:.故选:B.【点睛】本题考查均值不等式及利用不等式性质比较大小.7、D【解析】

讨论平面外一点和平面内一点连线,与平面垂直和不垂直两种情况.【详解】(1)设平面为平面,点为平面外一点,点为平面内一点,此时,直线垂直底面,过直线的平面有无数多个与底面垂直;(2)设平面为平面,点为平面外一点,点为平面内一点,此时,直线与底面不垂直,过直线的平面,只有平面垂直底面.综上,过平面外一点和平面内一点与平面垂直的平面有1个或无数个,故选D.【点睛】借助长方体研究空间中线、面位置关系问题,能使问题直观化,降低问题的抽象性.8、C【解析】

求出函数的图象分别向左平移个单位,向右平移个单位后的函数解析式,再根据其图象与函数的图象重合,可分别得关于,的方程,解之即可.【详解】解:将函数的图象向左平移个单位,得函数,其图象与的图象重合,,,,故,,,当时,取得最小值为.将函数的图象向右平移个单位,得到函数,其图象与的图象重合,,,,故,,当时,取得最小值为,的最小值为,故答案为:.【点睛】本题主要考查诱导公式,函数的图象变换规律,属于基础题.9、C【解析】

(1)化简求值域进行判断;(2)根据函数的对称性可判断;(3)根据余弦函数的图像性质可判断;(4)利用三角函数线可进行判断.【详解】解:(1),(1)错误;(2)是函数图象的一个对称中心,(2)错误;(3)根据余弦函数的性质可得的最大值为,,其值域是,(3)正确;(4)若都是第一象限角,且,利用三角函数线有,(4)正确.故选.【点睛】本题考查正弦函数与余弦函数、正切函数的性质,以及三角函数线定义,着重考查学生综合运用三角函数的性质分析问题、解决问题的能力,属于中档题.10、D【解析】

因为,所以,即;故选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

将这两式中的量全部用表示出来,正好有两个方程,两个未知数,解方程组即可求出。【详解】相当于,相当于,上面两式相除得代入就得,【点睛】基本量法是解决数列计算题最重要的方法,即将条件全部用首项和公比表示,列方程,解方程即可求得。12、【解析】

通过是与的等比中项得到,利用均值不等式求得最小值.【详解】实数是与的等比中项,,解得.则,当且仅当时,即时取等号.故答案为:.【点睛】本题考查了等比中项,均值不等式,1的代换是解题的关键.13、【解析】

根据空间中两点间的距离公式即可得到答案【详解】由空间中两点间的距离公式可得;;故距离为3【点睛】本题考查空间中两点间的距离公式,属于基础题。14、【解析】

首先求出在区间的值域,再由表示的含义,得到所求函数的反函数.【详解】因为,所以,.所以的反函数是.故答案为:【点睛】本题主要考查反函数定义,同时考查了三角函数的值域问题,属于简单题.15、2【解析】

在正数数列an中,由点an,an-1在直线x-2y=0上,知a【详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【点睛】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.16、【解析】

在中,在中,分别由正弦定理求出,,在中,由余弦定理可得解.【详解】由图可得,在中,由正弦定理可得,在中,由正弦定理可得,在中,由余弦定理可得:.故答案为:【点睛】此题考查利用正余弦定理求解三角形,根据已知边角关系建立等式求解,此题求AB的长度可在多个三角形中计算,恰当地选择可以减少计算量.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由变形可得,即,于是可得数列为等比数列,进而得到通项公式;(2)由(1)得,然后分为奇数、偶数两种情况,将转化为数列的求和问题解决.【详解】(1)∵,∴,∵,∴.又,∴数列是首项为8,公比为3的等比数列,∴.(2)当为正偶数时,.当为正奇数时,.∴.【点睛】(1)证明数列为等比数列时,在运用定义证明的同时还要说明数列中不存在等于零的项,这一点容易忽视.(2)数列求和时要根据数列通项公式的特点,选择合适的方法进行求解,求解时要注意确定数列的项数.18、(1);(2).【解析】

(1)先计算出,再代入公式,求出余弦值;(2)直接利用公式计算求值.【详解】(1)设的夹角为,∵,∴,又,可得,∴.(2).【点睛】本题考查利用数量积求向量的夹角、模的计算,考查基本运算求解能力.19、(1),,是偶函数(2)或【解析】

(1)先由已知求出,然后结合利用定义法判断函数的奇偶性即可;(2)讨论当时,当时对数函数的单调性求解不等式即可.【详解】解:(1)由题意得,,即,则,,则,函数的定义域为,则,是偶函数;(2)当时,在上是减函数,,,解得,所以原不等式的解集为;当时,在上是增函数,,,即,所以原不等式的解集为,综上所述,当时,原不等式的解集为,当时,原不等式的解集为.【点睛】本题考查了利用定义法判断函数的奇偶性,主要考查了利用对数函数的单调性求解不等式,重点考查了分类讨论的数学思想方法,属中档题.20、(I),;(II).【解析】试题分析:(I)根据频率直方图的相关概率易求,依据样本估计总体的思想可得该校高一年级学生成绩是合格等级的概率;(II)记“至少有一名学生是等级”事件为,求事件对立事件的的概率,可得.试题解析:(I)由题意可知,样本容量因为成绩是合格等级人数为:人,抽取的50人中成绩是合格等级的频率为,依据样本估计总体的思想,所以,该校高一年级学生成绩是合格等级的概率为(II)由茎叶图知,等级的学生共有3人,等级学生共有人,记等级的学生

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论