版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省山江湖协作体2025届数学高一下期末考试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.经过点,斜率为2的直线在y轴上的截距为()A. B. C.3 D.52.已知等差数列的前项和为,若,,则的值为()A. B.0 C. D.1823.已知,,则的最大值为()A.9 B.3 C.1 D.274.在钝角三角形ABC中,若B=45°,a=2,则边长cA.(1,2) B.(0,1)∪(5.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为的正三角形,E,F分别是PA,AB的中点,∠CEF=90°.则球O的体积为()A. B. C. D.6.已知点,则P在平面直角坐标系中位于A.第一象限 B.第二象限 C.第三象限 D.第四象限7.设向量,,若三点共线,则()A. B. C. D.28.已知,则().A. B. C. D.9.已知,是两个不同的平面,是两条不同的直线,下列命题中错误的是()A.若∥,,,则B.若∥,,,则C.若,,,则⊥D.若⊥,,,,则10.“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的()A.充分必要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列满足,若,则数列的通项______.12.已知等差数列中,其前项和为,且,,当取最大值时,的值等于_____.13.已知,则的最小值是__________.14.已知,,且,则的最小值为________.15.在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为.16.已知向量,,且与垂直,则的值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.等差数列的首项为23,公差为整数,且第6项为正数,从第7项起为负数.求此数列的公差及前项和.18.的内角的对边分别为,已知.(1)求;(2)若,求边上的高的长.19.己知角的终边经过点.求的值;求的值.20.设一元二次不等式的解集为.(Ⅰ)当时,求;(Ⅱ)当时,求的取值范围.21.设为正项数列的前项和,且满足.(1)求证:为等差数列;(2)令,,若恒成立,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
写出直线的点斜式方程,再将点斜式方程化为斜截式方程即可得解.【详解】因为直线经过点,且斜率为2,故点斜式方程为:,化简得:,故直线在y轴上的截距为.故选:B.【点睛】本题考查直线的方程,解题关键是应熟知直线的五种方程形式,属于基础题,2、B【解析】
由,可得,可得的值.【详解】解:已知等差数列中,可得,即:,,故选B【点睛】本题主要考查等差数列的性质,从数列自身的特点入手是解决问题的关键.3、B【解析】
由已知,可利用柯西不等式,构造柯西不等式,即可求解.【详解】由已知,可知,,利用柯西不等式,可构造得,即,所以的最大值为3,故选B.【点睛】本题主要考查了柯西不等式的应用,其中解答中熟记柯西不等式,合理构造柯西不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.4、D【解析】试题分析:解法一:,由三角形正弦定理诱导公式有,利用三角恒等公式能够得到,当A为锐角时,0∘<A<45∘,,即,当A为钝角时,90∘<A<135∘,,综上所述,;解法二:利用图形,如图,,,当点A(D)在线段BE上时(不含端点B,E),为钝角,此时;当点A在线段EF上时,为锐角三角形或直角三角形;当点A在射线FG(不含端点F)上时,为钝角,此时,所以c的取值范围为.考点:解三角形.【思路点睛】解三角形需要灵活运用正余弦定理以及三角形的恒等变形,在解答本题时,利用三角形内角和,将两角化作一角,再利用正弦定理即可列出边长c与角A的关系式,根据角A的取值范围即可求出c的范围,本题亦可利用物理学中力的合成,合力的大小来确定c的大小,正如解法二所述.5、D【解析】
计算可知三棱锥P-ABC的三条侧棱互相垂直,可得球O是以PA为棱的正方体的外接球,球的直径,即可求出球O的体积.【详解】在△PAC中,设,,,,因为点E,F分别是PA,AB的中点,所以,在△PAC中,,在△EAC中,,整理得,因为△ABC是边长为的正三角形,所以,又因为∠CEF=90°,所以,所以,所以.又因为△ABC是边长为的正三角形,所以PA,PB,PC两两垂直,则球O是以PA为棱的正方体的外接球,则球的直径,所以外接球O的体积为.故选D.【点睛】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.6、B【解析】
利用特殊角的三角函数值的符号得到点的坐标,直接判断点所在象限即可.【详解】,.在平面直角坐标系中位于第二象限.故选B.【点睛】本题考查了三角函数值的符号,考查了三角函数的诱导公式的应用,是基础题.7、A【解析】
利用向量共线的坐标表示可得,解方程即可.【详解】三点共线,,又,,,解得.故选:A【点睛】本题考查了向量共线的坐标表示,需掌握向量共线,坐标满足:,属于基础题.8、C【解析】
分子分母同时除以,利用同角三角函数的商关系化简求值即可.【详解】因为,所以,于是有,故本题选C.【点睛】本题考查了同角三角函数的商关系,考查了数学运算能力.9、A【解析】
根据平面和直线关系,依次判断每个选项得到答案.【详解】A.若,,,则如图所示情况,两直线为异面直线,错误其它选项正确.故答案选A【点睛】本题考查了直线平面的关系,找出反例是解题的关键.10、B【解析】试题分析:当时,直线为和直线,斜率之积等于,所以垂直;当两直线垂直时,,解得:或,根据充分条件必要条件概念知,“”是“直线(m+1)x+3my+2=0与直线(m-2)x+(m+1)y-1=0相互垂直”的充分不必要条件,故选B.考点:1、充分条件、必要条件;2、两条直线垂直的关系.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
直接利用数列的递推关系式和叠加法求出结果.【详解】因为,所以当时,.时也成立.所以数列的通项.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠加法在数列中的应用,主要考察学生的运算能力和转换能力,属于基础题.12、或【解析】
设等差数列的公差为,由可得出与的等量关系,然后求出的表达式,解不等式,即可得出使得取得最大值的正整数的值.【详解】设等差数列的公差为,由,可得,可得,,令,即,,解得.因此,当或时,取得最大值.故答案为:或.【点睛】本题考查等差数列前项和的最大值的求解,可利用二次函数的基本性质来求,也可以转化为等差数列所有的非负项之和的问题求解,考查化归与转化思想,属于中等题.13、【解析】分析:利用题设中的等式,把的表达式转化成,展开后,利用基本不等式求得y的最小值.详解:因为,所以,所以(当且仅当时等号成立),则的最小值是,总上所述,答案为.点睛:该题考查的是有关两个正数的整式形式和为定值的情况下求其分式形式和的最值的问题,在求解的过程中,注意相乘,之后应用基本不等式求最值即可,在做乘积运算的时候要注意乘1是不变的,如果不是1,要做除法运算.14、【解析】
由,可得,然后利用基本不等式可求出最小值.【详解】因为,所以,当且仅当,时取等号.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件.15、【解析】
直接利用长度型几何概型求解即可.【详解】因为区间总长度为,符合条件的区间长度为,所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x∈[0,1]的概率为,故答案为:.【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.16、【解析】
根据与垂直即可得出,进行数量积的坐标运算即可求出x的值.【详解】;;.故答案为.【点睛】本题考查向量垂直的充要条件,以及向量数量积的坐标运算,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、,【解析】
先设等差数列的公差为,根据第6项为正数,从第7项起为负数,得到求,再利用等差数列前项和公式求其.【详解】设等差数列的公差为,因为第6项为正数,从第7项起为负数,所以,即,所以又因为所以所以【点睛】本题主要考查了等差数列的通项公式和前n项和公式,还考查了运算求解的能力,属于中档题.18、(1)(2)【解析】
(1)首先由正弦定理,我们可以将条件化成角度问题,再通过两角和差的正弦公式,即可以得出的正切值,又因为在三角形中,从而求出的值.(2)由第一问得出,我们能求出,而,从而求出.【详解】(1)根据题意因为,所以得,即所以,又因为所以.(2)因为所以又的面积为:可得:【点睛】解三角形题中,我们常根据边的齐次,会利用正弦定理进行边化角,然后通过恒等变形,变成角相关等量关系,作为面积问题,我们初中更多是用底与高的处理,高中能用正弦形式表示,两者统一一起,又能得出相应的等量关系.19、(1)(2)【解析】
(1)直接利用三角函数的定义的应用求出结果.(2)利用同角三角函数关系式的变换和诱导公式的应用求出结果.【详解】(1)由题意,由角的终边经过点,根据三角函数的定义,可得.由知,则.【点睛】本题主要考查了三角函数关系式的恒等变换,同角三角函数的关系式的变换,诱导公式的应用,主要考察学生的运算能力和转换能力,属于基础题型.20、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)将代入得到关于的不等式,结合一元二次方程解一元二次不等式可求得集合;(Ⅱ)解集为即不等式恒成立,求解时结合与之对应的二次函数考虑可得到需满足的条件解不等式求的取值范围.【详解】(Ⅰ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资源开发保护制度
- 解毒王二明奖金制度
- 融资担保公司代偿追偿制度
- 2026山东事业单位统考济宁市兖州区招聘初级综合类岗位43人备考考试试题附答案解析
- 2026四川成都市自然资源调查利用研究院(成都市卫星应用技术中心)考核招聘2人参考考试题库附答案解析
- 2026厦门银行重庆分行社会招聘参考考试题库附答案解析
- 2026住房和城乡建设部直属事业单位第一批招聘20人参考考试试题附答案解析
- 2026交通运输部所属事业单位第四批统考招聘备考考试试题附答案解析
- 2026弥勒市自然资源局招聘业务协管员(4人)参考考试试题附答案解析
- 2026湖北恩施州城乡规划设计研究院有限公司技术人员招聘6人(第二轮)备考考试试题附答案解析
- 2026年湖南工业职业技术学院高职单招职业适应性测试备考题库含答案解析
- 国家自然基金形式审查培训
- 2026马年卡通特色期末评语(45条)
- NCCN临床实践指南:肝细胞癌(2025.v1)
- 免租使用协议书
- 2025 AHA心肺复苏与心血管急救指南
- 2026年九江职业大学单招职业适应性测试题库带答案详解
- 危化品库区风险动态评估-洞察与解读
- 激光焊接技术规范
- 消防联动排烟天窗施工方案
- 2025年高考物理 微专题十 微元法(讲义)(解析版)
评论
0/150
提交评论