北京市房山区房山实验中学高三(最后冲刺)新高考数学试卷及答案解析_第1页
北京市房山区房山实验中学高三(最后冲刺)新高考数学试卷及答案解析_第2页
北京市房山区房山实验中学高三(最后冲刺)新高考数学试卷及答案解析_第3页
北京市房山区房山实验中学高三(最后冲刺)新高考数学试卷及答案解析_第4页
北京市房山区房山实验中学高三(最后冲刺)新高考数学试卷及答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市房山区房山实验中学高三(最后冲刺)新高考数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某几何体的三视图如图所示,若图中小正方形的边长均为1,则该几何体的体积是A. B. C. D.2.已知函数,若函数在上有3个零点,则实数的取值范围为()A. B. C. D.3.关于函数,有下列三个结论:①是的一个周期;②在上单调递增;③的值域为.则上述结论中,正确的个数为()A. B. C. D.4.在中,,,,点满足,则等于()A.10 B.9 C.8 D.75.执行如图所示的程序框图,若输入,,则输出的值为()A.0 B.1 C. D.6.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.3607.在中,“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件8.已知曲线,动点在直线上,过点作曲线的两条切线,切点分别为,则直线截圆所得弦长为()A. B.2 C.4 D.9.木匠师傅对一个圆锥形木件进行加工后得到一个三视图如图所示的新木件,则该木件的体积()A. B. C. D.10.已知等差数列的前项和为,且,则()A.45 B.42 C.25 D.3611.设为的两个零点,且的最小值为1,则()A. B. C. D.12.双曲线的渐近线方程是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某种圆柱形的如罐的容积为个立方单位,当它的底面半径和高的比值为______.时,可使得所用材料最省.14.已知点是椭圆上一点,过点的一条直线与圆相交于两点,若存在点,使得,则椭圆的离心率取值范围为_________.15.已知,满足约束条件,则的最小值为__________.16.的展开式中的系数为__________(用具体数据作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求实数的取值范围18.(12分)已知函数.(1)当时,求函数在处的切线方程;(2)若函数没有零点,求实数的取值范围.19.(12分)眼保健操是一种眼睛的保健体操,主要是通过按摩眼部穴位,调整眼及头部的血液循环,调节肌肉,改善眼的疲劳,达到预防近视等眼部疾病的目的.某学校为了调查推广眼保健操对改善学生视力的效果,在应届高三的全体800名学生中随机抽取了100名学生进行视力检查,并得到如图的频率分布直方图.(1)若直方图中后三组的频数成等差数列,试估计全年级视力在5.0以上的人数;(2)为了研究学生的视力与眼保健操是否有关系,对年级不做眼保健操和坚持做眼保健操的学生进行了调查,得到下表中数据,根据表中的数据,能否在犯错的概率不超过0.005的前提下认为视力与眼保健操有关系?(3)在(2)中调查的100名学生中,按照分层抽样在不近视的学生中抽取8人,进一步调查他们良好的护眼习惯,在这8人中任取2人,记坚持做眼保健操的学生人数为X,求X的分布列和数学期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87920.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.21.(12分)已知集合,集合,.(1)求集合B;(2)记,且集合M中有且仅有一个整数,求实数k的取值范围.22.(10分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】该几何体是直三棱柱和半圆锥的组合体,其中三棱柱的高为2,底面是高和底边均为4的等腰三角形,圆锥的高为4,底面半径为2,则其体积为,.故选B点睛:由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.2、B【解析】

根据分段函数,分当,,将问题转化为的零点问题,用数形结合的方法研究.【详解】当时,,令,在是增函数,时,有一个零点,当时,,令当时,,在上单调递增,当时,,在上单调递减,所以当时,取得最大值,因为在上有3个零点,所以当时,有2个零点,如图所示:所以实数的取值范围为综上可得实数的取值范围为,故选:B【点睛】本题主要考查了函数的零点问题,还考查了数形结合的思想和转化问题的能力,属于中档题.3、B【解析】

利用三角函数的性质,逐个判断即可求出.【详解】①因为,所以是的一个周期,①正确;②因为,,所以在上不单调递增,②错误;③因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域.当时,,在上单调递增,所以,的值域为,③错误;综上,正确的个数只有一个,故选B.【点睛】本题主要考查三角函数的性质应用.4、D【解析】

利用已知条件,表示出向量,然后求解向量的数量积.【详解】在中,,,,点满足,可得则==【点睛】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.5、A【解析】

根据输入的值大小关系,代入程序框图即可求解.【详解】输入,,因为,所以由程序框图知,输出的值为.故选:A【点睛】本题考查了对数式大小比较,条件程序框图的简单应用,属于基础题.6、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.考点:1.二项式定理;2.组合数的计算.7、D【解析】

通过列举法可求解,如两角分别为时【详解】当时,,但,故充分条件推不出;当时,,但,故必要条件推不出;所以“”是“”的既不充分也不必要条件.故选:D.【点睛】本题考查命题的充分与必要条件判断,三角函数在解三角形中的具体应用,属于基础题8、C【解析】

设,根据导数的几何意义,求出切线斜率,进而得到切线方程,将点坐标代入切线方程,抽象出直线方程,且过定点为已知圆的圆心,即可求解.【详解】圆可化为.设,则的斜率分别为,所以的方程为,即,,即,由于都过点,所以,即都在直线上,所以直线的方程为,恒过定点,即直线过圆心,则直线截圆所得弦长为4.故选:C.【点睛】本题考查直线与圆位置关系、直线与抛物线位置关系,抛物线两切点所在直线求解是解题的关键,属于中档题.9、C【解析】

由三视图知几何体是一个从圆锥中截出来的锥体,圆锥底面半径为,圆锥的高,截去的底面劣弧的圆心角为,底面剩余部分的面积为,利用锥体的体积公式即可求得.【详解】由已知中的三视图知圆锥底面半径为,圆锥的高,圆锥母线,截去的底面弧的圆心角为120°,底面剩余部分的面积为,故几何体的体积为:.故选C.【点睛】本题考查了三视图还原几何体及体积求解问题,考查了学生空间想象,数学运算能力,难度一般.10、D【解析】

由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的前项和.11、A【解析】

先化简已知得,再根据题意得出f(x)的最小值正周期T为1×2,再求出ω的值.【详解】由题得,设x1,x2为f(x)=2sin(ωx﹣)(ω>0)的两个零点,且的最小值为1,∴=1,解得T=2;∴=2,解得ω=π.故选A.【点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题.12、C【解析】

根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设圆柱的高为,底面半径为,根据容积为个立方单位可得,再列出该圆柱的表面积,利用导数求出最值,从而进一步得到圆柱的底面半径和高的比值.【详解】设圆柱的高为,底面半径为.∵该圆柱形的如罐的容积为个立方单位∴,即.∴该圆柱形的表面积为.令,则.令,得;令,得.∴在上单调递减,在上单调递增.∴当时,取得最小值,即材料最省,此时.故答案为:.【点睛】本题考查函数的应用,解答本题的关键是写出表面积的表示式,再利用导数求函数的最值,属中档题.14、【解析】

设,设出直线AB的参数方程,利用参数的几何意义可得,由题意得到,据此求得离心率的取值范围.【详解】设,直线AB的参数方程为,(为参数)代入圆,化简得:,,,,存在点,使得,,即,,,,故答案为:【点睛】本题主要考查了椭圆离心率取值范围的求解,考查直线、圆与椭圆的综合运用,考查直线参数方程的运用,属于中档题.15、【解析】

作出约束条件所表示的可行域,利用直线截距的几何意义,即可得答案.【详解】画出可行域易知在点处取最小值为.故答案为:【点睛】本题考查简单线性规划的最值,考查数形结合思想,考查运算求解能力,属于基础题.16、【解析】

利用二项展开式的通项公式可求的系数.【详解】的展开式的通项公式为,令,故,故的系数为.故答案为:.【点睛】本题考查二项展开式中指定项的系数,注意利用通项公式来计算,本题属于容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解析】试题分析:(Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到关于a的不等式,解出即可.试题解析:(1)不等式等价于或或,解得或,所以不等式的解集是;(2),,,解得实数的取值范围是.点睛:含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.18、(1).(2)【解析】

(1)利用导数的几何意义求解即可;(2)利用导数得出的单调性以及极值,从而得出的图象,将函数的零点问题转化为函数图象的交点问题,由图,即可得出实数的取值范围.【详解】(1)当时,,∴切线斜率,又切点∴切线方程为,即.(2),记,令得;∴的情况如下表:2+0单调递增极大值单调递减当时,取极大值又时,;时,若没有零点,即的图像与直线无公共点,由图像知的取值范围是.【点睛】本题主要考查了导数的几何意义的应用,利用导数研究函数的零点问题,属于中档题.19、(1)(2)能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系(3)详见解析【解析】

(1)由题意可计算后三组的频数的总数,由其成等差数列可得后三组频数,可得视力在5.0以上的频率,可得全年级视力在5.0以上的的人数;(2)由题中数据计算的值,对照临界值表可得答案;(3)由题意可计算出这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,可得X可取0,1,2,分别计算出其概率,列出分布列,可得其数学期望.【详解】解:(1)由图可知,第一组有3人,第二组7人,第三组27人,因为后三组的频数成等差数列,共有(人)所以后三组频数依次为24,21,18,所以视力在5.0以上的频率为0.18,故全年级视力在5.0以上的的人数约为人(2),因此能在犯错误的概率不超过0.005的前提下认为视力与眼保健操有关系.(3)调查的100名学生中不近视的共有24人,从中抽取8人,抽样比为,这8人中不做眼保健操和坚持做眼保健操的分别有2人和6人,X可取0,1,2,,X的分布列X012PX的数学期望.【点睛】本题主要考查频率分布直方图,独立性检测及离散型随机变量的期望与方差等相关知识,考查学生分析数据与处理数据的能力,属于中档题.20、(1);(2)见解析【解析】

(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解即可【详解】(1)因为学生总数为1000人,该年级分文、理科按男女用分层抽样抽取10人,则抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值为0,1,2,3,,,,,的分布列为0123.【点睛】本题考查分层抽样,考查超几何分布及期望,考查运算求解能力,是基础题21、(1)(2)【解析】

(1)由不等式可得,讨论与的关系,即可得到结果;(2)先解得不等式,由集合M中有且仅有一个整数,当时,则M中仅有的整数为;当时,则M中仅有的整数为,进而求解即可.【详解】解:(1)因为,所以,当,即时,;当,即时,;当,即时,.(2)由得,当,即时,M中仅有的整数为,所以,即;当,即时,M中仅有的整数为,所以,即;综上,满足题意的k的范围为【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论