重庆市六校联考2025届高一数学第二学期期末复习检测试题含解析_第1页
重庆市六校联考2025届高一数学第二学期期末复习检测试题含解析_第2页
重庆市六校联考2025届高一数学第二学期期末复习检测试题含解析_第3页
重庆市六校联考2025届高一数学第二学期期末复习检测试题含解析_第4页
重庆市六校联考2025届高一数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市六校联考2025届高一数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.圆,那么与圆有相同的圆心,且经过点的圆的方程是().A. B.C. D.2.若两个正实数,满足,且不等式有解,则实数的取值范围是()A. B. C. D.3.为了得到函数的图像,可以将函数的图像()A.向右平移个长度单位 B.向左平移个长度单位C.向右平移个长度单位 D.向左平移个长度单位4.某校进行了一次消防安全知识竞赛,参赛学生的得分经统计得到如图的频率分布直方图,若得分在的有60人,则参赛学生的总人数为()A.100 B.120 C.150 D.2005.某学校高一、高二、高三年级的学生人数分别为、、人,该校为了了解本校学生视力情况,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为的样本,则应从高三年级抽取的学生人数为()A. B. C. D.6.把一块长是10,宽是8,高是6的长方形木料削成一个体积最大的球,这个球的体积等于()A. B.480 C. D.7.将两个长、宽、高分别为5,4,3的长方体垒在一起,使其中两个面完全重合,组成一个大长方体,则大长方体的外接球表面积的最大值为()A. B. C. D.8.在中,分别为角的对边),则的形状是()A.直角三角形 B.等腰三角形或直角三角形C.等腰直角三角形 D.正三角形9.一组数平均数是,方差是,则另一组数,的平均数和方差分别是()A. B.C. D.10.若将函数的图象向右平移个单位后,所得图象对应的函数为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正三棱锥的底面边长为6,所在直线与底面所成角为60°,则该三棱锥的侧面积为_______.12.已知,若对任意,均有,则的最小值为______;13.已知角满足且,则角是第________象限的角.14.函数的定义域为________15.如图是函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的一个周期的图象,则f(1)=__________.16.等差数列中,,则其前12项之和的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求下列各式的值:(1)求的值;(2)已知,,且,,求的值.18.如图,在中,角,,的对边分别为,,,且.(1)求的大小;(2)若,为外一点,,,求四边形面积的最大值.19.在我国古代数学名著《九章算术》中将由四个直角三角形组成的四面体称为“鳖臑”.已知三棱维P-ABC中,PA⊥底面ABC.(1)从三棱锥P-ABC中选择合适的两条棱填空_________⊥________,则该三棱锥为“鳖臑”;(2)如图,已知AD⊥PB垂足为D,AE⊥PC,垂足为E,∠ABC=90°.(i)证明:平面ADE⊥平面PAC;(ii)作出平面ADE与平面ABC的交线l,并证明∠EAC是二面角E-l-C的平面角.(在图中体现作图过程不必写出画法)20.已知数列满足:.(1)求证:数列为等差数列,并求;(2)记,求数列的前项和.21.如图,在三棱柱中,为正三角形,为的中点,,,.(1)证明:平;(2)证明:平面平面.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

圆的标准方程为,圆心,故排除、,代入点,只有项经过此点,也可以设出要求的圆的方程:,再代入点,可以求得圆的半径为.故选.点睛:这个题目主要考查圆的标准方程,因为这是一道选择题,故根据与条件中的圆的方程可以得到圆心坐标,进而可以排除几个选项,如果正规方法,就可以按照已知圆心,写出标准方程,代入已知点求出标准方程即可.2、D【解析】

利用基本不等式求得的最小值,根据不等式存在性问题,解一元二次不等式求得的取值范围.【详解】由于,而不等式有解,所以,即,解得或.故选:D【点睛】本小题主要考查利用基本不等式求最小值,考查不等式存在性问题的求解,考查一元二次不等式的解法,属于中档题.3、D【解析】

根据三角函数的图象平移的原则,即左加右减,即可得答案.【详解】由,可以将函数图象向左平移个长度单位即可,故选:D.【点睛】本题考查三角函数的平移变换,求解时注意平移变换是针对自变量而言的,同时要注意是由谁变换到谁.4、C【解析】

根据频率分布直方图求出得分在的频率,即可得解.【详解】根据频率分布直方图可得:得分在的频率0.35,得分在的频率0.3,得分在的频率0.2,得分在的频率0.1,所以得分在的频率0.05,得分在的频率为0.4,有60人,所以参赛学生的总人数为60÷0.4=150人.故选:C【点睛】此题考查根据频率分布直方图求某组的频率,根据频率分布直方图的特征计算小矩形的面积,根据总面积之和为1计算未知数,结合频率频数计算总人数.5、C【解析】

设从高三年级抽取的学生人数为,根据总体中和样本中高三年级所占的比例相等列等式求出的值.【详解】设从高三年级抽取的学生人数为,由题意可得,解得,因此,应从高三年级抽取的学生人数为,故选:C.【点睛】本题考查分层抽样中的相关计算,解题时要利用总体中每层的抽样比例相等或者总体或样本中每层的所占的比相等来列等式求解,考查运算求解能力,属于基础题.6、A【解析】

由题意知,此球是棱长为6的正方体的内切球,根据其几何特征知,此球的直径与正方体的棱长是相等的,故可得球的直径为6,再由球的体积公式求解即可.【详解】解:由已知可得球的直径为6,故半径为3,其体积是,故选:.【点睛】本题考查长方体内切球的几何特征,以及球的体积公式,属于基础题.7、B【解析】

要计算长方体的外接球表面积就是要求出外接球的半径,根据长方体的对角线是外接球的直径这一性质,就可以求出外接球的表面积,分类讨论:(1)长宽的两个面重合;(2)长高的两个面重合;(3)高宽两个面重合,分别计算出新长方体的对角线,然后分别计算出外接球的表面积,最后通过比较即可求出最大值.【详解】(1)当长宽的两个面重合,新的长方体的长为5,宽为4,高为6,对角线长为:,所以大长方体的外接球表面积为;(2)当长高两个面重合,新的长方体的长5,宽为8,高为3,对角线长为:,所以大长方体的外接球表面积为;(3)当宽高两个面重合,新的长方体的长为10,宽为4,高为3,对角线长为:,所以大长方体的外接球表面积为,显然大长方体的外接球表面积的最大值为,故本题选B.【点睛】本题考查了长方体外接球的半径的求法,考查了分类讨论思想,考查了球的表面积计算公式,考查了数学运算能力.8、A【解析】

根据正弦定理得到,化简得到,得到,得到答案.【详解】,则,即,即,,故,.故选:.【点睛】本题考查了正弦定理判断三角形形状,意在考查学生的计算能力和转化能力.9、B【解析】

直接利用公式:平均值方差为,则的平均值和方差为:得到答案.【详解】平均数是,方差是,的平均数为:方差为:故答案选B【点睛】本题考查了平均数和方差的计算:平均数是,方差是,则的平均值和方差为:.10、B【解析】

根据正弦型函数的图象平移规律计算即可.【详解】.故选:B.【点睛】本题考查三角函数图象的平移变化,考查对基本知识的理解和掌握,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

画出图形,过P做底面的垂线,垂足O落在底面正三角形中心,即,因为,即可求出,所以.【详解】作于,因为为正三棱锥,所以,为中点,连结,则,过作⊥平面,则点为正三角形的中心,点在上,所以,,正三角形的边长为6,则,,,斜高,三棱锥的侧面积为:【点睛】此题考查正三棱锥,即底面为正三角形,侧面为等腰三角形的三棱锥,正四面体为四个面都是正三角形,画出图像,属于简单的立体几何题目.12、【解析】

根据对任意,均有,分析得到,再根据正弦型函数的最值公式求解出的最小值.【详解】因为对任意,均有,所以,所以,所以,所以.故答案为:.【点睛】本题考查正弦型函数的应用,难度一般.正弦型函数的最值一定是在对称轴的位置取到,因此正弦型函数取最大值与最小值时对应的自变量的差的绝对值最小为,此时最大值与最小值对应的对称轴相邻.13、三【解析】

根据三角函数在各个象限的符号,确定所在象限.【详解】由于,所以为第三、第四象限角;由于,所以为第二、第三象限角.故为第三象限角.故答案为:三【点睛】本小题主要考查三角函数在各个象限的符号,属于基础题.14、【解析】

根据反余弦函数的定义,可得函数满足,即可求解.【详解】由题意,根据反余弦函数的定义,可得函数满足,解得,即函数的定义域为.故答案为:【点睛】本题主要考查了反余弦函数的定义的应用,其中解答中熟记反余弦函数的定义,列出不等式求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、2【解析】

由三角函数图象,利用三角函数的性质,求得函数的解析式,即可求解的值,得到答案.【详解】由三角函数图象,可得,由,得,于是,又,即,解得,所以,则.【点睛】本题主要考查了由三角函数的部分图象求解函数的解析式及其应用,其中解答中熟记三角函数的图象与性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解析】

利用等差数列的通项公式、前n项和公式直接求解.【详解】∵等差数列{an}中,a3+a10=25,∴其前12项之和S126(a3+a10)=6×25=1.故答案为:1.【点睛】本题考查等差数列的前n项和的公式,考查等差数列的性质的应用,考查运算求解能力,是基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)利用二倍角公式以及辅助角公式化简即可.(2)利用配凑把打开即可.【详解】解:(1)原式(2),,又,,,,【点睛】本题主要考查了二倍角公式,两角和与差的正切的应用.辅助角公式.18、(1)(2)【解析】

(1)由余弦定理和诱导公式整理,得到,求出;(2)在中,用余弦定理表示出,判断是等腰直角三角形,再利用三角形面积公式表示出,再利用辅助角公式化简,求出四边形面积的最大值.【详解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即为.(2)在中,,,由余弦定理可得,又∵,∴为等腰直角三角形,∴,∴当时,四边形面积有最大值,最大值为.【点睛】本题主要考查余弦定理解三角形、诱导公式、三角形面积公式和利用三角函数求最值,考查学生的分析转化能力和计算能力,属于中档题.19、(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)见证明;(ii)见解析【解析】

(1)根据已知填BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC均可;(2)(i)先证明PC⊥平面ADE,再证明平面ADE⊥平面PAC;(ii)在平面PBC中,记DE∩BC,=F,连结AF,则AF为所求的l.再证明∠EAC是二面角E-l-C的平面角.【详解】(1)BC⊥AB或BC⊥AC或BC⊥PB或BC⊥PC.(2)(i)在三棱锥P-ABC中,BC⊥AB,BC⊥PA,BC∩PA=A,所以BC⊥平面PAB,又AD⊂平面PAB,所以BC⊥AD,又AD⊥PB,PB∩BC=B,所以AD⊥平面PBC.又PC⊂平面PBC,所以PC⊥AD,因为AE⊥PC且AE∩AD=A,所以PC⊥平面ADE,因为PC⊂平面PAC,所以平面ADE⊥平面PAC.(ii)在平面PBC中,记DE∩BC=F,连结AF,则AF为所求的l.因为PC⊥平面AED,l⊂平面AED,所以PC⊥l,因为PA⊥平面ABC,l⊂平面ABC,所以PA⊥l,又PA∩PC=P,所以l⊥平面PAC.又AE⊂平面PAC且AC⊂平面PAC,所以AE⊥l,AC⊥l.所以∠EAC就是二面角E-l-C的一个平面角.【点睛】本题主要考查空间线面位置关系,面面角的作图及证明,属于中档题.20、(1)证明见解析,;(2).【解析】

(1)由等差数列的定义证明,利用等差数列通项公式可求得;(2)用裂项相消法求数列的和.【详解】(1)证明:∵,∴,即,∴是等差数列,公差为,,∴,∴;(2)由(1),所以.【点睛】本题考查用定义证明等差数列,考查等差数列的通项公式,考查用裂项相消法求数列的前项和.掌握等差数的定义是解题关键.数列求和时除掌握等比数列的求和公式外还要掌握数列的几种求和方法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论