版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市周浦中学高一下数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知a=logA.a<b<c B.a<c<b C.c<a<b D.b<c<a2.如图,测量河对岸的塔高时,选与塔底B在同一水平面内的两个测点C与D.现测得,,,并在点C测得塔顶A的仰角为,则塔高为()A. B. C.60m D.20m3.设变量满足约束条件,则目标函数的最大值为()A.3 B.4 C.18 D.404.设是定义在上的偶函数,若当时,,则()A. B. C. D.5.在各项均为正数的等比数列中,若,则()A.1 B.4C.2 D.6.设数列是等差数列,是其前项和,且,,则下列结论中错误的是()A. B. C. D.与均为的最大值7.若某扇形的弧长为,圆心角为,则该扇形的半径是()A. B. C. D.8.在中,角所对的边分边为,已知,则此三角形的解的情况是()A.有一解 B.有两解 C.无解 D.有解但解的个数不确定9.已知数列{an}为等差数列,Sn是它的前n项和.若=2,S3=12,则S4=()A.10 B.16 C.20 D.2410.如图,飞机的航线和山顶在同一个铅垂平面内,已知飞机的高度为海拔20000m,速度为900km/h,飞行员先看到山顶的俯角为30∘,经过80s后又看到山顶的俯角为75A.5000(3+1)C.5000(3-3)二、填空题:本大题共6小题,每小题5分,共30分。11.在平行四边形中,=,边,的长分别为2,1.若,分别是边,上的点,且满足,则的取值范围是______.12.在锐角△中,角所对应的边分别为,若,则角等于________.13.在等比数列中,,公比,若,则的值为.14.向量.若向量,则实数的值是________.15.102,238的最大公约数是________.16.在平面直角坐标系xOy中,已知直角中,直角顶点A在直线上,顶点B,C在圆上,则点A横坐标的取值范围是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在直角坐标系中,已知以点为圆心的及其上一点.(1)设圆与轴相切,与圆外切,且圆心在直线上,求圆的标准方程;(2)设平行于的直线与圆相交于两点,且,求直线的方程.18.做一个体积为,高为2m的长方体容器,问底面的长和宽分别为多少时,所用的材料表面积最少?并求出其最小值.19.已知向量,,.(1)若,求的值;(2)若,,求的值.20.如图,制图工程师要用两个同中心的边长均为4的正方形合成一个八角形图形,由对称性,图中8个三角形都是全等的三角形,设.(1)试用表示的面积;(2)求八角形所覆盖面积的最大值,并指出此时的大小.21.已知圆关于直线对称,半径为,且圆心在第一象限.(Ⅰ)求圆的方程;(Ⅱ)若直线与圆相交于不同两点、,且,求实数的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
运用中间量0比较a , c【详解】a=log20.2<log21=0,【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.2、D【解析】
由正弦定理确定的长,再求出.【详解】,由正弦定理得:故选D【点睛】本题是正弦定理的实际应用,关键是利用正弦定理求出,属于基础题.3、C【解析】不等式所表示的平面区域如下图所示,当所表示直线经过点时,有最大值考点:线性规划.4、A【解析】
利用函数的为偶函数,可得,代入解析式即可求解.【详解】是定义在上的偶函数,则,又当时,,所以.故选:A【点睛】本题考查了利用函数的奇偶性求函数值,属于基础题.5、C【解析】试题分析:由题意得,根据等比数列的性质可知,又因为,故选C.考点:等比数列的性质.6、C【解析】
根据等差数列的性质,结合,,分析出错误结论.【详解】由于,,所以,,,所以,与均为的最大值.而,所以,所以C选项结论错误.故选:C.【点睛】本小题主要考查等差数列的性质,考查分析与推理能力,属于基础题.7、D【解析】
由扇形的弧长公式列方程得解.【详解】设扇形的半径是,由扇形的弧长公式得:,解得:故选D【点睛】本题主要考查了扇形的弧长公式,考查了方程思想,属于基础题.8、C【解析】由三角形正弦定理可知无解,所以三角形无解,选C.9、C【解析】
根据等差数列的前n项和公式,即可求出.【详解】因为S3=3+d=6+3d=12,解得d=2,所以S4=4+d=20.【点睛】本题主要考查了等差数列的前n项和公式,属于中档题.10、C【解析】分析:先求AB的长,在△ABC中,可求BC的长,进而由于CD⊥AD,所以CD=BCsin∠CBD,故可得山顶的海拔高度.详解:如图,∠A=30°,∠ACB=45°,
AB=900×80×13600∴在△ABC中,BC=102∵CD⊥AD,=102sin30点睛:本题以实际问题为载体,考查正弦定理的运用,关键是理解俯角的概念,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
以A为原点AB为轴建立直角坐标系,表示出MN的坐标,利用向量乘法公式得到表达式,最后计算取值范围.【详解】以A为原点AB为轴建立直角坐标系平行四边形中,=,边,的长分别为2,1设则当时,有最大值5当时,有最小值2故答案为【点睛】本题考查了向量运算和向量乘法的最大最小值,通过建立直角坐标系的方法简化了技巧,是解决向量复杂问题的常用方法.12、【解析】试题分析:利用正弦定理化简,得,因为,所以,因为为锐角,所以.考点:正弦定理的应用.【方法点晴】本题主要考查了正弦定理的应用、以及特殊角的三角函数值问题,其中解答中涉及到解三角形中的边角互化,转化为三角函数求值的应用,解答中熟练掌握正弦定理的变形,完成条件的边角互化是解答的关键,注重考查了分析问题和解答问题的能力,同时注意条件中锐角三角形,属于中档试题.13、1【解析】
因为,,故答案为1.考点:等比数列的通项公式.14、-3【解析】
试题分析:∵,∴,又∵,∴,∴,∴考点:本题考查了向量的坐标运算点评:熟练运用向量的坐标运算是解决此类问题的关键,属基础题15、34【解析】试题分析:根据辗转相除法的含义,可得238=2×102+34,102=3×34,所以得两个数102、238的最大公约数是34.故答案为34.考点:辗转相除法.16、【解析】
由题意画出图形,写出以原点为圆心,以为半径的圆的方程,与直线方程联立求得值,则答案可求.【详解】如图所示,当点往直线两边运动时,不断变小,当点为直线上的定点时,直线与圆相切时,最大,∴当为正方形,则,则以为圆心,以为半径的圆的方程为.联立,得.解得或.点横坐标的取值范围是.故答案为:.【点睛】本题考查直线与圆位置关系的应用,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意坐标法的应用.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解析】
(1)由圆的方程求得圆心坐标和半径,依题意可设圆的方程为,由圆与圆外切可知圆心距等于两圆半径的和,由此列式可求得,即可得出圆的标准方程;(2)求出所在直线的斜率,设直线的方程为,求出圆心到直线的距离,利用垂径定理列式求得,则直线方程即可求出.【详解】(1)因为圆为,所以圆心的坐标为,半径.根据题意,设圆的方程为.又因为圆与圆外切,所以,解得,所以圆的标准方程为.(2)由题意可知,所以可设直线的方程为.又,所以圆心到直线的距离,即,解得或,所以直线的方程为或.【点睛】本题主要考查圆与圆的位置关系以及直线与圆的位置关系,其中运用了两圆外切时,圆心距等于两圆的半径之和,还涉及到圆的方程、直线的方程和点到直线的距离公式.18、长和宽均为4m时,最小值为64【解析】
利用体积求得ab=16,只需表示出表面积,结合高为2m,利用基本不等式求出最值即可.【详解】设底面的长和宽分别为,因为体积为32,高为c=2m,所以底面积为16,即ab=16所用材料的面积S=2ab+2bc+2ca=32+4(a+b),当且仅当a=b=4时取等号,答:当底面的长和宽均为4m时,所用的材料表面积最少,其最小值为64【点睛】与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19、(1);(2)或【解析】
(1)根据向量平行的坐标公式得出,利用二倍角公式以及弦化切即可得出答案;(2)利用向量的模长公式得出,由二倍角公式以及降幂公式,辅助角公式得出,结合正弦函数的性质得出的值.【详解】(1)由,得,所以.所以.(2)由,得所以,所以,所以.因为,所以,所以或解得或.【点睛】本题主要考查了由向量平行求参数,模长公式,简单的三角恒等变换以及正弦函数的性质的应用,属于中档题.20、(1),.(2)时,达到最大此时八角形所覆盖面积前最大值为.【解析】
(1)注意到,从而的周长为,故,所以,注意.(2)令,则,根据可求最大值.【详解】(1)设为,,,,,(2)令,只需考虑取到最大值的情况,即为,当,即时,达到最大,此时八角形所覆盖面积为16+4最大值为.【点睛】如果三角函数式中仅含有和,则可令
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年服装设计(时尚服装设计)试题及答案
- 2026年美甲设计(渐变案例)试题及答案
- 2025年中职园林技术(绿化工程施工)试题及答案
- 2025年大学药物制剂(药物制剂理论)试题及答案
- 2025年高职电工电子技术(电路故障排查)试题及答案
- 2025年大学农业(农业生态学)试题及答案
- 2026年写字楼物业(办公设施维护)试题及答案
- 中央医院科普大赛
- 送女朋友的520祝福语参考
- 近十年北京中考数学试题及答案2025
- 公司酶制剂发酵工工艺技术规程
- 大数据分析在供热中的应用方案
- 污泥安全管理制度范本
- 开题报告范文基于人工智能的医学像分析与诊断系统设计
- 大黄附子细辛汤课件
- 《人间充质基质细胞来源细胞外囊泡冻干粉质量要求》(征求意见稿)
- 中润盛和(孝义)新能源科技 孝义市杜村乡分散式微风发电项目可行性研究报告
- 2026年中国农业银行秋季校园招聘即将开始考试笔试试题(含答案)
- 山东济南2019-2024年中考满分作文87篇
- (2025年标准)sm调教协议书
- 医院急救应急体系构建与实施
评论
0/150
提交评论