版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
通辽市重点中学2025届高一数学第二学期期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设,则下列结论正确的是()A. B. C. D.2.若平面向量a与b的夹角为60°,|b|=4,(aA.2B.4C.6D.123.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离4.把函数y=sin(2x﹣)的图象向右平移个单位得到的函数解析式为()A.y=sin(2x﹣) B.y=sin(2x+) C.y=cos2x D.y=﹣sin2x5.下列命题中正确的是()A.如果两条直线都平行于同一个平面,那么这两条直线互相平行B.过一条直线有且只有一个平面与已知平面垂直C.如果一条直线平行于一个平面内的一条直线,那么这条直线平行于这个平面D.如果两条直线都垂直于同一平面,那么这两条直线共面6.已知α、β为锐角,cosα=,tan(α−β)=−,则tanβ=()A. B.3 C. D.7.函数的值域为A.[1,] B.[1,2] C.[,2] D.[8.在正方体中,异面直线与所成角的大小为()A. B. C. D.9.已知数列满足,(且),且数列是递增数列,数列是递减数列,又,则A. B. C. D.10.已知直线的倾斜角为,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在等比数列中,,,则__________.12.已知角的终边经过点,若,则______.13.直线的倾斜角为______.14.等差数列中,则此数列的前项和_________.15.函数的最小正周期为.16.已知,则______;的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前项和为,,.(1)求数列的通项公式;(2)记,求数列的前项和;(3)在(2)的条件下,当时,比较和的大小.18.已知集合,数列是公比为的等比数列,且等比数列的前三项满足.(1)求通项公式;(2)若是等比数列的前项和,记,试用等比数列求和公式化简(用含的式子表示)19.设,已知函数,.(1)若是的零点,求不等式的解集:(2)当时,,求的取值范围.20.已知圆经过、、三点.(1)求圆的标准方程;(2)若过点的直线被圆截得的弦的长为,求直线的倾斜角.21.在平面直角坐标系中,为坐标原点,,,三点满足.(1)求值;(2)已知若的最小值为,求的最大值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】
利用不等式的性质,即可求解,得到答案.【详解】由题意知,根据不等式的性质,两边同乘,可得成立.故选:B.【点睛】本题主要考查了不等式的性质及其应用,其中解答中熟记不等式的基本性质是解答的关键,着重考查了推理与运算能力,属于基础题.2、C【解析】∵(a+2b)·(a-3b)=-72,∴3、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r4、D【解析】试题分析:三角函数的平移原则为左加右减上加下减.直接求出平移后的函数解析式即可.解:把函数y=sin(2x﹣)的图象向右平移个单位,所得到的图象的函数解析式为:y=sin[2(x﹣)﹣]=sin(2x﹣π)=﹣sin2x.故选D.考点:函数y=Asin(ωx+φ)的图象变换.5、D【解析】
利用定理及特例法逐一判断即可。【详解】解:如果两条直线都平行于同一个平面,那么这两条直线相交、平行或异面,故A不正确;过一条直线有且只有一个平面与已知平面垂直,不正确.反例:如果该直线本身就垂直于已知平面的话,那么可以找到无数个平面与已知平面垂直,故B不正确;如果这两条直线都在平面内且平行,那么这直线不平行于这个平面,故C不正确;如果两条直线都垂直于同一平面,则这两条直线平行,所以这两条直线共面,故D正确.故选:D.【点睛】本题主要考查了线线平行的判定,面面垂直的判定,线面平行的判定,线面垂直的性质,考查空间思维能力,属于中档题。6、B【解析】
利用角的关系,再利用两角差的正切公式即可求出的值.【详解】因为,且为锐角,则,所以,因为,所以故选B.【点睛】主要考查了两角差的正切公式,同角三角函数的平方关系,属于中档题.对于给值求值问题,关键是寻找已知角(条件中的角)与未知角(问题中的角)的关系,用已知角表示未知角,从而将问题转化为求已知角的三角函数值,再利用两角和与差的三角函数公式、二倍角公式以及诱导公式即可求出.7、D【解析】
因为函数,平方求出的取值范围,再根据函数的性质求出的值域.【详解】函数定义域为:,因为,又,所以的值域为.故选D.【点睛】本题考查函数的值域,此题也可用三角换元求解.求函数值域常用方法:单调性法,换元法,判别式法,反函数法,几何法,平方法等.8、C【解析】
连接、,可证四边形为平行四边形,得,得(或补角)就是异面直线与所成角,由正方体的性质即可得到答案.【详解】连接、,如下图:在正方体中,且;四边形为平行四边形,则;(或补角)就是异面直线与所成角;又在正方体中,,为等边三角形,,即异面直线与所成角的大小为;故答案选C【点睛】本题考查正方体中异面直线所成角的大小,属于基础题.9、A【解析】
根据已知条件可以推出,当为奇数时,,当为偶数时,,因此去绝对值可以得到,,利用累加法继而算出结果.【详解】,即,或,又,.数列为递增数列,数列为递减数列,当为奇数时,,当为偶数时,,..故选A.【点睛】本题主要考查了通过递推式求数列的通项公式,数列单调性的应用,以及并项求和法的应用。10、B【解析】
根据直线斜率与倾斜角的关系求解即可.【详解】因为直线的倾斜角为,故直线斜率.故选:B【点睛】本题主要考查了直线的倾斜角与斜率的关系,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、8【解析】
可先计算出公比,从而利用求得结果.【详解】因为,所以,所以,则.【点睛】本题主要考查等比数列基本量的相关计算,难度很小.12、【解析】
利用三角函数的定义可求.【详解】由三角函数的定义可得,故.故答案为:.【点睛】本题考查三角函数的定义,注意根据正弦的定义构建关于的方程,本题属于基础题.13、【解析】
先求得直线的斜率,进而求得直线的倾斜角.【详解】由于直线的斜率为,故倾斜角为.【点睛】本小题主要考查由直线一般式方程求斜率,考查斜率和倾斜角的对应关系,属于基础题.14、180【解析】由,,可知.15、【解析】试题分析:,所以函数的周期等于考点:1.二倍角降幂公式;2.三角函数的周期.16、50【解析】
由分段函数的表达式,代入计算即可;先求出的表达式,结合分段函数的性质,求最小值即可.【详解】由,可得,,所以;由的表达式,可得,当时,,此时,当时,,由二次函数的性质可知,,综上,的最小值为0.故答案为:5;0.【点睛】本题考查求函数值,考查分段函数的性质,考查函数最值的计算,考查学生的计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】
(1)设等差数列的公差为,利用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到通项公式;(2)由(1)得,利用等差数列的求和公式可得;(3)分别求得和,作差比较即可得到大小关系.【详解】(1)设等差数列的公差为,由,得,化简得①.由,得,得②.由①②解得:,,则.则数列的通项公式为.(2)由(1)得,①当时,,;②当且时,,两式作差得:有:有:有:得由上知.(3)由(1)得由,由(2)得当时,,令.则.由,有,得,故单调递增.又由,故,可得.【点睛】本题考查等差数列的通项公式和求和公式的运用,也考查了错位相减法求数列的和,分类讨论思想和作差比较大小的问题,属于中档题.18、(1)(2)【解析】
(1)观察式子特点可知,只有2,4,8三项符合等比数列特征,再根据题设条件求解即可;(2)根据等比数列通项公式表示出,再采用分组求和法化简的表达式即可【详解】(1)由题可知,只有2,4,8三项符合等比数列特征,又,故,故,;(2),,所以【点睛】本题考查等比数列通项公式的求法,等比数列前项和公式的用法,分组求和法的应用,属于中档题19、(1);(2)【解析】
(1)利用可求得,将不等式化为;分别在和两种情况下解不等式可求得结果;(2)当时,,可将变为在上恒成立;分类讨论得到解析式,从而可得单调性;分别在、、三种情况下,利用构造不等式,解不等式求得结果.【详解】(1)是的零点由得:当时,,即,解得:当时,,即,解得:的解集为:(2)当时,,即:时,在上恒成立①当时,恒成立符合题意②当时,在上单调递增;在上单调递减;在上单调递增当时,,解得:当时,,解集为当时,,解得:综上所述,的取值范围为:【点睛】本题考查含绝对值不等式的求解、恒成立问题的求解;求解恒成立问题的关键是能够通过分类讨论的方式去掉绝对值符号,结合函数单调性,将问题转化为所求参数与函数最值之间的大小关系的比较问题,从而构造不等式求得结果.20、(1);(2)或.【解析】
(1)设出圆的一般方程,然后代入三个点的坐标,联立方程组可解得;(2)讨论直线的斜率是否存在,根据点到直线的距离和勾股定理列式可得直线的倾斜角.【详解】(1)设圆的一般方程为,将点、、的坐标代入圆的方程得,解得,所以,圆的一般方程为,标准方程为;(2)设圆心到直线的距离为,则.①当直线的斜率不存在时,即直线到圆心的距离为,满足题意,此时直线的倾斜角为;②当直线的斜率存在时,设直线的方程为,即,则圆心到直线的距离为,解得,此时,直线的倾斜角为.综上所述,直线的倾斜角为或.【点睛】本题考查圆的方程的求解,同时也考查了利用直线截圆的弦长求直线的倾斜角,一般转化为求圆心到直线的距离,并结合点到直线的距离公式以及勾股定理列等式求解,考查计算能力,属中档题.21、(1)(2)1【解析】
(1)由,得,化简得,即可得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病一级预防的健康管理策略
- 心脏移植供体分配的医患沟通模式创新
- 心理健康AI:沙盒测试中的伦理与数据合规
- 保安人员管理及安全意识培训
- 微创神经外科老年患者麻醉风险评估模型
- 微创神经手术中血流动力学不稳定预防措施
- 微创神经外科手术中超声刀与激光刀的术后康复指导要点
- 微创手术在脊髓血管畸形急症中的应用
- 微创引流对术后认知功能恢复的影响
- 微创入路对术后颅内压的影响
- 客户管理全周期客户画像分析模板
- 5S培训教材看图学5S资料
- 显示设备安装与调试方案
- 掘进工安全操作规程
- 2025上海复旦大学人事处招聘办公室行政管理助理岗位1名考试参考试题及答案解析
- 业主装修物业免责协议书
- 2025-2030年中国海底节点(OBN)地震勘探市场深度分析及发展前景研究预测报告
- 《数据标注实训(中级)》中职全套教学课件
- 2025至2030中国生长因子(血液和组织)行业发展趋势分析与未来投资战略咨询研究报告
- 2025中国甲状腺相关眼病诊断和治疗指南
- 测绘测量设备保密制度范文
评论
0/150
提交评论