清华大学中学生标准学术能力诊断性测试2025届高一数学第二学期期末学业质量监测试题含解析_第1页
清华大学中学生标准学术能力诊断性测试2025届高一数学第二学期期末学业质量监测试题含解析_第2页
清华大学中学生标准学术能力诊断性测试2025届高一数学第二学期期末学业质量监测试题含解析_第3页
清华大学中学生标准学术能力诊断性测试2025届高一数学第二学期期末学业质量监测试题含解析_第4页
清华大学中学生标准学术能力诊断性测试2025届高一数学第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

清华大学中学生标准学术能力诊断性测试2025届高一数学第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线互相平行,则的值等于()A.0或或3 B.0或3 C.0或 D.或32.已知,,,则的取值范围是()A. B. C. D.3.若函数的图象上所有的点向右平移个单位长度后得到的函数图象关于对称,则的值为A. B. C. D.4.同时抛掷三枚硬币,则抛掷一次时出现两枚正面一枚反面的概率为()A. B. C. D.5.若,则()A.-1 B. C.-1或 D.或6.函数(其中)的图象如图所示,为了得到的图象,则只要将的图象()A.向右平移 B.向右平移C.向左平移 D.向左平移7.边长为的正三角形中,点在边上,,是的中点,则()A. B. C. D.8.一个三棱锥的三视图如图所示,则该棱锥的全面积为()A. B. C. D.9.直线被圆截得的劣弧与优弧的长之比是()A. B. C. D.10.在中,,是的内心,若,其中,动点的轨迹所覆盖的面积为(

)A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则______.12.已知,,,是球的球面上的四点,,,两两垂直,,且三棱锥的体积为,则球的表面积为______.13.设扇形的半径长为,面积为,则扇形的圆心角的弧度数是14.读程序,完成下列题目:程序如图:(1)若执行程序时,没有执行语句,则输入的的范围是_______;(2)若执行结果,输入的的值可能是___.15.已知函数的图象如图所示,则不等式的解集为______.16.直线与的交点坐标为________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤.试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤?(注:,)18.已知分别是锐角三个内角的对边,且,且.(Ⅰ)求的值;(Ⅱ)求面积的最大值;19.已知.(1)若不等式的解集为,求的值;(2)解不等式.20.2013年11月,总书记到湖南湘西考察时首次作出了“实事求是、因地制宜、分类指导精准扶贫”的重要指示.2014年1月,中央详细规制了精准扶贫工作模式的顶层设计,推动了“精准扶贫”思想落地.2015年1月,精准扶贫首个调研地点选择了云南,标志着精准扶贫正式开始实行.某单位立即响应党中央号召,对某村6户贫困户中的甲户进行定点帮扶,每年跟踪调查统计一次,从2015年1月1日至2018年12月底统计数据如下(人均年纯收入):年份2015年2016年2017年2018年年份代码1234收入(百元)25283235(1)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程,并估计甲户在2019年能否脱贫;(注:国家规定2019年脱贫标准:人均年纯收入为3747元)(2)2019年初,根据扶贫办的统计知,该村剩余5户贫困户中还有2户没有脱贫,现从这5户中抽取2户,求至少有一户没有脱贫的概率.参考公式:,,其中为数据的平均数.21.已知向量,,.(1)若,求实数的值;(2)若,求向量与的夹角.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

根据直线的平行关系,列方程解参数即可.【详解】由题:直线与直线互相平行,所以,,解得:或.经检验,当或时,两条直线均平行.故选:D【点睛】此题考查根据直线平行关系求解参数的取值,需要熟记公式,注意考虑直线重合的情况.2、D【解析】

根据所给等式,用表示出,代入中化简,令并构造函数,结合函数的图像与性质即可求得的取值范围.【详解】因为,所以,由解得,因为,所以,则由可得,令,.所以画出,的图像如下图所示:由图像可知,函数在内的值域为,即的取值范围为,故选:D.【点睛】本题考查了由等式求整式的取值范围问题,打勾函数的图像与性质应用,注意若使用基本不等式,注意等号成立条件及自变量取值范围影响,属于中档题.3、C【解析】

先由题意求出平移后的函数解析式,再由对称中心,即可求出结果.【详解】函数的图象上所有的点向右平移个单位长度后,可得函数的图像,又函数的图象关于对称,,,故,又,时,.故选C.【点睛】本题主要考查由平移后的函数性质求参数的问题,熟记正弦函数的对称性,以及函数的平移原则即可,属于常考题型.4、B【解析】

根据二项分布的概率公式求解.【详解】每枚硬币正面向上的概率都等于,故恰好有两枚正面向上的概率为:.故选B.【点睛】本题考查二项分布.本题也可根据古典概型概率计算公式求解.5、C【解析】

将已知等式平方,可根据二倍角公式、诱导公式和同角三角函数平方关系将等式化为,解方程可求得结果.【详解】由得:即,解得:或本题正确选项:【点睛】本题考查三角函数值的求解问题,关键是能够通过平方运算,将等式化简为关于的方程,涉及到二倍角公式、诱导公式和同角三角函数平方关系的应用.6、A【解析】

利用函数的图像可得,从而可求出,再利用特殊点求出,进而求出三角函数的解析式,再利用三角函数图像的变换即可求解.【详解】由图可知,所以,当时,,由于,解得:,所以,要得到的图像,则需要将的图像向右平移.故选:A【点睛】本题考查了由图像求解析式以及三角函数的图像变换,需掌握三角函数图像变换的原则,属于基础题.7、D【解析】

,故选D.8、A【解析】

数形结合,还原出该几何体的直观图,计算出各面的面积,可得结果.【详解】如图为等腰直角三角形,平面根据三视图,可知点到的距离为点到的距离为所以,故该棱锥的全面积为故选:A【点睛】本题考查三视图还原,并求表面积,难点在于还原几何体,对于一些常见的几何体要熟悉其三视图,对解题有很大帮助,属中档题.9、A【解析】

计算出圆心到直线的距离,根据垂径定理,结合锐角三角函数关系,可以求出劣弧所对的圆心角的度数,根据弧度制的定义,这样就可以求出劣弧与优弧的长之比.【详解】圆心O到直线的距离为:,直线被圆截得的弦为AB,弦AB所对的圆心角为,弦AB的中点为C,由垂径定理可知:,所以,劣弧与优弧的长之比为:,故本题选A.【点睛】本题考查了圆的垂径定理、点到直线距离公式、弧长公式,考查了数学运算能力.10、A【解析】

画出图形,由已知条件便知P点在以BD,BP为邻边的平行四边形内,从而所求面积为2倍的△AOB的面积,从而需求S△AOB:由余弦定理可以求出AB的长为5,根据O为△ABC的内心,从而O到△ABC三边的距离相等,从而,由面积公式可以求出△ABC的面积,从而求出△AOB的面积,这样2S△AOB便是所求的面积.【详解】如图,根据题意知,P点在以BP,BD为邻边的平行四边形内部,∴动点P的轨迹所覆盖图形的面积为2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O为△ABC的内心;所以内切圆半径r=,所以∴==;∴动点P的轨迹所覆盖图形的面积为.故答案为:A.【点睛】本题主要考查考查向量加法的平行四边形法则,向量数乘的几何意义,余弦定理,以及三角形内心的定义,三角形的面积公式.意在考查学生对这些知识的掌握水平和分析推理能力.(2)本题的解题关键是找到P点所覆盖的区域.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据题意令f(x)=,求出x的值,即可得出f﹣1()的值.【详解】令f(x)=+arcsin(2x)=,得arcsin(2x)=﹣,∴2x=﹣,解得x=﹣,∴f﹣1()=﹣.故答案为:﹣.【点睛】本题考查了反函数以及反正弦函数的应用问题,属于基础题.12、【解析】

根据三棱锥的体积可求三棱锥的侧棱长,补体后可求三棱锥外接球的直径,从而可计算外接球的表面积.【详解】三棱锥的体积为,故,因为,,两两垂直,,故可把三棱锥补成正方体,该正方体的体对角线为三棱锥外接球的直径,又体对角线的长度为,故球的表面积为.填.【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.13、2【解析】试题分析:设扇形圆心角的弧度数为α,则扇形面积为S=αr2=α×22=4解得:α=2考点:扇形面积公式.14、2【解析】

(1)不执行语句,说明不满足条件,,从而得;(2)执行程序,有当时,,只有,.【详解】(1)不执行语句,说明不满足条件,,故有.(2)当时,,只有,.故答案为:(1)(2);【点睛】本题主要考察程序语言,考查对简单程序语言的阅读理解,属于基础题.15、【解析】

根据函数图象以及不等式的等价关系即可.【详解】解:不等式等价为或,

则,或,

故不等式的解集是.

故答案为:.【点睛】本题主要考查不等式的求解,根据不等式的等价性结合图象之间的关系是解决本题的关键.16、【解析】

直接联立方程得到答案.【详解】联立方程解得即两直线的交点坐标为.故答案为【点睛】本题考查了两直线的交点,属于简单题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析.(2).(3)吨.【解析】

(1)直接描点即可(2)计算出的平均数,,及,,利用公式即可求得,问题得解.(3)将代入可得,结合已知即可得解.【详解】解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图;(2)计算,,,,∴回归方程的系数为:.,∴所求线性回归方程为;(3)利用线性回归方程计算时,,则,即比技改前降低了19.65吨.【点睛】本题主要考查了线性回归方程的求法,考查计算能力,还考查了线性回归方程的应用,属于中档题.18、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)利用正弦定理将角化为边得,利用余弦定理可得;(Ⅱ)由及基本不等式可得,故而可得面积的最大值.试题解析:(Ⅰ)因为,由正弦定理有,既有,由余弦定理得,.(Ⅱ),即,当且仅当时等号成立,当时,,所以的最大值为.19、(1);(2)时,解集为,时,解集为,时解集为.【解析】

(1)由一元二次不等式的解集一一元二次方程的解之间的联系求解;(2)按和的大小分类讨论.【详解】(1)由题意的解集为,则方程的解为1和4,∴,解得;(2)不等式为,时,,此时不等式解集为,时,,,当时,,。综上,原不等式的解集:时,解集为,时,解集为,时解集为.【点睛】本题考查解一元二次不等式,掌握三个二次的关系是解题关键,解题时注意对参数分类讨论.20、(1);甲户在2019年能够脱贫;(2)【解析】

(1)由已知数据求得与的值,得到线性回归方程,取求得值,说明甲户在2019年能否脱贫;(2)列出从该村剩余5户贫困户中任取2户的所有可能情况,利用随机事件的概率计算公式求解.【详解】(1)根据表格中数据可得,,由,,可得.∴关于的线性回归方程,当时,(百元),∵3850>3747,∴甲户在2019年能够脱贫;(2)设没有脱贫的2户为,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论