甘肃省肃南县一中2025届高一数学第二学期期末学业质量监测模拟试题含解析_第1页
甘肃省肃南县一中2025届高一数学第二学期期末学业质量监测模拟试题含解析_第2页
甘肃省肃南县一中2025届高一数学第二学期期末学业质量监测模拟试题含解析_第3页
甘肃省肃南县一中2025届高一数学第二学期期末学业质量监测模拟试题含解析_第4页
甘肃省肃南县一中2025届高一数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省肃南县一中2025届高一数学第二学期期末学业质量监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.的直观图如图所示,其中,则在原图中边的长为()A. B. C.2 D.2.函数的简图是()A. B. C. D.3.已知是定义在上的奇函数,当时,,那么不等式的解集是()A. B.C. D.4.已知,若,则()A. B. C. D.5.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法6.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为()A.2 B.4 C.6 D.87.已知函数的部分图象如图所示,则此函数的解析式为()A. B.C. D.8.已知点,则向量在方向上的投影为()A. B. C. D.9.矩形ABCD中,,,则实数()A.-16 B.-6 C.4 D.10.已知,,点在内,且,设,则等于()A. B.3 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则的最大值是____.12.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.13.已知函数那么的值为.14.有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为的铁球,并注入水,使水面与球正好相切,然后将球取出,则这时容器中水的深度为___________.15.项数为的等差数列,若奇数项之和为88,偶数项之和为77,则实数的值为_____.16.已知三棱锥,若平面ABC,,则异面直线PB与AC所成角的余弦值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数满足.(1)若,对任意都有,求的取值范围;(2)是否存在实数,,使得不等式对一切实数恒成立?若存在,请求出,,使;若不存在,请说明理由.18.某工厂共有200名工人,已知这200名工人去年完成的产品数都在区间(单位:万件)内,其中每年完成14万件及以上的工人为优秀员工,现将其分成5组,第1组、第2组第3组、第4组、第5组对应的区间分别为,,,,,并绘制出如图所示的频率分布直方图.(1)选取合适的抽样方法从这200名工人中抽取容量为25的样本,求这5组分别应抽取的人数;(2)现从(1)中25人的样本中的优秀员工中随机选取2名传授经验,求选取的2名工人在同一组的概率.19.求过点且与圆相切的直线方程.20.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)过点A且平行于BC边的直线的方程;(2)BC边的中线所在直线的方程.21.已知的三个内角,,的对边分别为,,,函数,且当时,取最大值.(1)若关于的方程,有解,求实数的取值范围;(2)若,且,求的面积.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

由直观图确定原图形中三角形边的关系及长度,然后计算.【详解】在原图形中,,,∴.故选:D.【点睛】本题考查直观图,考查由直观图还原原平面图形.掌握斜二测画法的规则是解题关键.2、D【解析】

变形为,求出周期排除两个选项,再由函数值正负排除一个,最后一个为正确选项.【详解】函数的周期是,排除AB,又时,,排除C.只有D满足.故选:D.【点睛】本题考查由函数解析式选图象,可通过研究函数的性质如单调性、奇偶性、周期性、对称性等排除某些选项,还可求出特殊值,特殊点,函数值的正负,函数值的变化趋势排除一些选项,从而得出正确选项.3、B【解析】

根据奇函数的性质求出的解析式,然后分类讨论求出不等式的解集.【详解】因为是定义在上的奇函数,所以有,显然是不等式的解集;当时,;当时,,综上所述:不等式的解集是,故本题选B.【点睛】本题考查了利用奇函数性质求解不等式解集问题,考查了分类思想,正确求出函数的解析式是解题的关键.4、C【解析】

由,得,则,则.【考点定位】5、B【解析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.6、B【解析】

如图,设抛物线方程为,交轴于点,则,即点纵坐标为,则点横坐标为,即,由勾股定理知,,即,解得,即的焦点到准线的距离为4,故选B.【点睛】7、B【解析】

由图象可知,所以,又因为,所以所求函数的解析式为.8、A【解析】

,,向量在方向上的投影为,故选A.9、B【解析】

根据题意即可得出,从而得出,进行数量积的坐标运算即可求出实数.【详解】据题意知,,,.故选:.【点睛】考查向量垂直的充要条件,以及向量数量积的坐标运算,属于容易题.10、B【解析】

先根据,可得,又因为,,所以可得:在轴方向上的分量为,在轴方向上的分量为,又根据,可得答案.【详解】,,

,,

在轴方向上的分量为,

在轴方向上的分量为,

,,

两式相比可得:.故选B.【点睛】.向量的坐标运算主要是利用加、减、数乘运算法则进行的.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及运算法则的正确使用.二、填空题:本大题共6小题,每小题5分,共30分。11、4【解析】

利用对数的运算法则以及二次函数的最值化简求解即可.【详解】,,,则.当且仅当时,函数取得最大值.【点睛】本题主要考查了对数的运算法则应用以及利用二次函数的配方法求最值.12、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.13、【解析】试题分析:因为函数所以==.考点:本题主要考查分段函数的概念,计算三角函数值.点评:基础题,理解分段函数的概念,代入计算.14、15【解析】

根据球的半径,先求得球的体积;根据圆与等边三角形关系,设出的边长为,由面积关系表示出圆锥的体积;设拿出铁球后水面高度为,用表示出水的体积,由即可求得液面高度.【详解】因为铁球半径为,所以由球的体积公式可得,设的边长为,则由面积公式与内切圆关系可得,解得,则圆锥的高为.则圆锥的体积为,设拿出铁球后的水面为,且到的距离为,如下图所示:则由,可得,所以拿出铁球后水的体积为,由,可知,解得,即将铁球取出后容器中水的深度为15.故答案为:15.【点睛】本题考查了圆锥内切球性质的应用,球的体积公式及圆锥体积公式的求法,属于中档题.15、7【解析】

奇数项和偶数项相减得到和,故,代入公式计算得到答案.【详解】由题意知:,前式减后式得到:,后式减前式得到故:解得故答案为:7【点睛】本题考查了等差数列的奇数项和与偶数项和关系,通过变换得到是解题的关键.16、【解析】

过B作,且,则或其补角即为异面直线PB与AC所成角由此能求出异面直线PB与AC所成的角的余弦值.【详解】过B作,且,则四边形为菱形,如图所示:或其补角即为异面直线PB与AC所成角.设.,,平面ABC,,.异面直线PB与AC所成的角的余弦值为.故答案为.【点睛】本题考查异面直线所成角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)存在,使不等式恒成立,详见解析.【解析】

(1)由知函数关于对称,求出后,通过构造函数求出;(2)利用不等式的两边夹定理,令,得,结合已知条件,解出;然后设存在实数,,命题成立,运用根的判别式建立关于实数的不等式组,解得.【详解】(1)由得此时,,构造函数,.即的取值范围是.(2)由对一切实数恒成立,得由得由得恒成立,也即,此时,.把,.代入,不等式也恒成立,所以,.【点睛】本题第(1)问,常用“反客为主法”,即把参数当成主元,而把看成参数;第(2)问,不等式对任意实数恒成立,常用赋值法切入问题.18、(1)第1组:2;第2组:8,;第3组:9;第4组:3;第5组:3(2)【解析】

(1)根据频率之和为列方程,解方程求得的值.然后根据分层抽样的计算方法,计算出每组抽取的人数.(2)利用列举法,结合古典概型概率计算公式,计算出所求概率.【详解】(1):,.用分层抽样比较合适.第1组应抽取的人数为,第2组应抽取的人数为,第3组应抽取的人数为,第4组应抽取的人数为,第5组应抽取的人数为.(2)(1)中25人的样本中的优秀员工中,第4组有3人,记这3人分别为,第5组有3人,记这3人分别为.从这6人中随机选取2名,所有的基本事件为:,,,,,,,,,,,,,,,共有15个基本事件.选取的2名工人在同一组的基本事件有,,,,,共6个,故选取的2名工人在同一组的概率为.【点睛】本小题主要考查补全频率分布,考查分层抽样,考查古典概型的计算,属于基础题.19、直线方程为或【解析】

当直线的斜率不存在时,直线方程为,满足题意,当直线的斜率存在时,设出直线的方程,由圆心到直线的距离等于半径,可解出的值,从而求出方程。【详解】当直线的斜率不存在时,直线方程为,经检验,满足题意.当直线的斜率存在时,设直线方程为,即,圆心到直线的距离等于半径,即,可解得.即直线为.综上,所求直线方程为或.【点睛】本题考查了圆的切线的求法,考查了直线的方程,考查了点到直线的距离公式,属于基础题。20、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】

(1)先求出BC的斜率,再用点斜式求出过点A且平行于BC边的直线方程;

(2)先求出BC的中点为D的坐标,再用两点式求出直线AD的方程.【详解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率为,故过点A且平行于BC边的直线的方程为y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中点为D(2,3),由两点式求出BC边的中线所在直线AD的方程为,即7x﹣y﹣11=1.【点睛】本题主要考查直线的斜率公式,用点斜式、两点式求直线的方程,属于基础题.21、(1);(2).【解析】

(1)利用两角和差的正弦公式整理可得:,再利用已知可得:(),结合已知可得:,求得:时,,问题得解.(2)利用正弦定理可得:,结合可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论