江苏省南京市南京师范大学附属中学2025届数学高一下期末调研试题含解析_第1页
江苏省南京市南京师范大学附属中学2025届数学高一下期末调研试题含解析_第2页
江苏省南京市南京师范大学附属中学2025届数学高一下期末调研试题含解析_第3页
江苏省南京市南京师范大学附属中学2025届数学高一下期末调研试题含解析_第4页
江苏省南京市南京师范大学附属中学2025届数学高一下期末调研试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市南京师范大学附属中学2025届数学高一下期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆M:x2+y2-2ay=0a>0截直线x+y=0A.内切 B.相交 C.外切 D.相离2.下列命题中正确的是()A.相等的角终边必相同 B.终边相同的角必相等C.终边落在第一象限的角必是锐角 D.不相等的角其终边必不相同3.已知函数,若实数满足,则的取值范围是()A. B. C. D.4.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.1,0.2,0.3,0.4,则下列说法正确的是A.A+B与C是互斥事件,也是对立事件 B.B+C与D不是互斥事件,但是对立事件C.A+C与B+D是互斥事件,但不是对立事件 D.B+C+D与A是互斥事件,也是对立事件5.下列结论不正确的是()A.若,,则 B.若,,则C.若,则 D.若,则6.阅读如图所示的程序,若运该程序输出的值为100,则的面的条件应该是()A. B. C. D.7.如图是一圆锥的三视图,正视图和侧视图都是顶角为120°的等腰三角形,若过该圆锥顶点S的截面三角形面积的最大值为2,则该圆锥的侧面积为A. B. C. D.48.在三棱柱中,底面,是正三角形,若,则该三棱柱外接球的表面积为()A. B. C. D.9.已知,则下列不等式成立的是()A. B. C. D.10.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有1个白球”和“都是红球”B.“至少有2个白球”和“至多有1个红球”C.“恰有1个白球”和“恰有2个白球”D.“至多有1个白球”和“都是红球”二、填空题:本大题共6小题,每小题5分,共30分。11.在矩形中,,现将矩形沿对角线折起,则所得三棱锥外接球的体积是________.12.在边长为2的菱形中,,是对角线与的交点,若点是线段上的动点,且点关于点的对称点为,则的最小值为______.13.在中,角、、所对应边分别为、、,,的平分线交于点,且,则的最小值为______14.已知向量与的夹角为,且,;则__________.15.已知直线和,若,则a等于________.16.已知向量、的夹角为,且,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知某公司生产某款手机的年固定成本为400万元,每生产1万部还需另投入160万元.设公司一年内共生产该款手机x(x≥40)万部且并全部销售完,每万部的收入为R(x)万元,且R(x)=74000(1)写出年利润W(万元)关于年产量x(万部)的函数关系式;(2)当年产量为多少万部时,公司在该款手机的生产中所获得的利润最大?并求出最大利润.18.若函数满足且,则称函数为“函数”.(1)试判断是否为“函数”,并说明理由;(2)函数为“函数”,且当时,,求的解析式,并写出在上的单调递增区间;(3)在(2)的条件下,当时,关于的方程为常数有解,记该方程所有解的和为,求.19.已知等差数列与等比数列满足,,且.(1)求数列,的通项公式;(2)设,是否存在正整数,使恒成立?若存在,求出的值;若不存在,请说明理由.20.已知平面向量,.(1)若与垂直,求;(2)若,求.21.已知圆的圆心在轴的正半轴上,半径为2,且被直线截得的弦长为.(1)求圆的方程;(2)设是直线上的动点,过点作圆的切线,切点为,证明:经过,,三点的圆必过定点,并求出所有定点的坐标.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】化简圆M:x2+(y-a)2=a又N(1,1),r2、A【解析】

根据终边相同的角的的概念可得正确的选项.【详解】终边相同的角满足,故B、D错误,终边落在第一象限的角可能是负角,故C错误,相等的角的终边必定相同,故A正确.故选:A.【点睛】本题考查终边相同的角,注意终边相同时,有,本题属于基础题.3、B【解析】

求出函数的定义域,分析函数的单调性与奇偶性,将所求不等式变形为,然后利用函数的单调性与定义域可得出关于实数的不等式组,即可解得实数的取值范围.【详解】对于函数,有,解得,则函数的定义域为,定义域关于原点对称,,所以,函数为奇函数,由于函数在区间上为增函数,函数在区间上为减函数,所以,函数在上为增函数,由得,所以,,解得.因此,实数的取值范围是.故选:B.【点睛】本题考查函数不等式的求解,解答的关键就是分析函数的单调性和奇偶性,考查计算能力,属于中等题.4、D【解析】

不可能同时发生的事件为互斥事件,当两个互斥事件的概率和为1,则两个事件为对立事件,易得答案.【详解】因为事件彼此互斥,所以与是互斥事件,因为,,,所以与是对立事件,故选D.【点睛】本题考查互斥事件、对立事件的概念,注意对立事件一定是互斥事件,而互斥事件不一定是对立事件.5、B【解析】

根据不等式的性质,对选项逐一分析,由此得出正确选项.【详解】对于A选项,不等式两边乘以一个正数,不等号不改变方程,故A正确.对于B选项,若,则,故B选项错误.对于C、D选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C、D正确.综上所述,本小题选B.【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.6、D【解析】

根据输出值和代码,可得输出的最高项的值,进而结合当型循环结构的特征得判断框内容.【详解】根据循环体,可知因为输出的值为100,所以由等差数列求和公式可知求和到19停止,结合当型循环结构特征,可知满足条件时返回执行循环体,因而判断框内的内容为,故选:D.【点睛】本题考查了当型循环结构的代码应用,根据输出值选择条件,属于基础题.7、B【解析】

过该圆锥顶点S的截面三角形面积最大是直角三角形,根据面积为2求出圆锥的母线长,再根据正视图求圆锥底面圆的半径,最后根据扇形面积公式求圆锥的侧面积.【详解】过该圆锥顶点S的截面三角形面积最直角三角形,设圆锥的母线长和底面圆的半径分别为,则,即,又,所以圆锥的侧面积;故选B.【点睛】本题考查三视图及圆锥有关计算,此题主要难点在于判断何时截面三角形面积最大,要结合三角形的面积公式,当,即截面是等腰直角三角时面积最大.8、C【解析】

设球心为,的中心为,求出与,利用勾股定理求出外接球的半径,代入球的表面积公式即可.【详解】设球心为,的中心为,则,,球的半径,所以球的表面积为.故选:C【点睛】本题考查多面体外接球问题,球的表面积公式,属于中档题.9、D【解析】

依次判断每个选项得出答案.【详解】A.,取,不满足,排除B.,取,不满足,排除C.,当时,不满足,排除D.,不等式两边同时除以不为0的正数,成立故答案选D【点睛】本题考查了不等式的性质,意在考查学生的基础知识.10、C【解析】

结合互斥事件与对立事件的概念,对选项逐个分析可选出答案.【详解】对于选项A,“至少有1个白球”和“都是红球”是对立事件,不符合题意;对于选项B,“至少有2个白球”表示取出2个球都是白色的,而“至多有1个红球”表示取出的球1个红球1个白球,或者2个都是白球,二者不是互斥事件,不符合题意;对于选项C,“恰有1个白球”表示取出2个球1个红球1个白球,与“恰有2个白球”是互斥而不对立的两个事件,符合题意;对于选项D,“至多有1个白球”表示取出的2个球1个红球1个白球,或者2个都是红球,与“都是红球”不是互斥事件,不符合题意.故选C.【点睛】本题考查了互斥事件和对立事件的定义的运用,考查了学生对知识的理解和掌握,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

取的中点,连接,三棱锥外接球的半径再计算体积.【详解】如图,取的中点,连接.由题意可得,则所得三棱锥外接球的半径,其体积为.故答案为【点睛】本题考查了三棱锥的外切球体积,计算是解题的关键.12、-6【解析】

由题意,然后结合向量共线及数量积运算可得,再将已知条件代入求解即可.【详解】解:菱形的对称性知,在线段上,且,设,则,所以,又因为,当时,取得最小值-6.故答案为:-6.【点睛】本题考查了平面向量的线性运算,重点考查了向量共线及数量积运算,属中档题.13、18【解析】

根据三角形面积公式找到的关系,结合基本不等式即可求得最小值.【详解】根据题意,,因为的平分线交于点,且,所以而所以,化简得则当且仅当,即,时取等号,即最小值为.故答案为:【点睛】本题考查三角形面积公式和基本不等式,考查计算能力,属于中等题型14、【解析】

已知向量与的夹角为,则,已知模长和夹角代入式子即可得到结果为故答案为1.15、【解析】

根据两直线互相垂直的性质可得,从而可求出的值.【详解】直线和垂直,.解得.故答案为:【点睛】本题考查了直线的一般式,根据两直线的位置关系求参数的值,熟记两直线垂直系数满足:是关键,属于基础题.16、【解析】

根据向量的数量积的应用进行转化即可.【详解】,与的夹角为,∴•||||cos4,则,故答案为.【点睛】本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)W=73600-400000x-160x,(x≥40);(2)当x=50【解析】

(1)根据题意,即可求解利润关于产量的关系式为W=(2)由(1)的关系式,利用基本不等式求得最大值,即可求解最大利润.【详解】(1)由题意,可得利润W关于年产量x的函数关系式为W=xRx=74000-400000x-160x-400=73600-2由1可得W=73600-=73600-16000=57600,当且仅当400000x=160,即x=50时取等号,所以当x=50时,【点睛】本题主要考查了函数的实际应用问题,以及利用基本不等式求最值,其中解答中认真审题,得出利润W关于年产量x的函数关系式,再利用基本不等式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.18、(1)不是“M函数”;(2),;(3).【解析】

由不满足,得不是“M函数”,可得函数的周期,,当时,当时,在上的单调递增区间:,由可得函数在上的图象,根据图象可得:当或1时,为常数有2个解,其和为当时,为常数有3个解,其和为.当时,为常数有4个解,其和为即可得当时,记关于x的方程为常数所有解的和为,【详解】不是“M函数”.,,不是“M函数”.函数满足,函数的周期,,当时,当时,,在上的单调递增区间:,;由可得函数在上的图象为:当或1时,为常数有2个解,其和为.当时,为常数有3个解,其和为.当时,为常数有4个解,其和为当时,记关于x的方程为常数所有解的和为,则.【点睛】本题考查了三角函数的图象、性质,考查了三角恒等变形,及三角函数型方程问题,属于难题.19、(1),.(2)存在正整数,,证明见解析【解析】

(1)根据题意,列出关于d与q的两个等式,解方程组,即可求出。(2)利用错位相减求出,再讨论求出的最小值,对应的n值即为所求的k值。【详解】(1)解:设等差数列与等比数列的公差与公比分别为,,则,解得,于是,,.(2)解:由,即,①,②①②得:,从而得.令,得,显然、所以数列是递减数列,于是,对于数列,当为奇数时,即,,,…为递减数列,最大项为,最小项大于;当为偶数时,即,,,…为递增数列,最小项为,最大项大于零且小于,那么数列的最小项为.故存在正整数,使恒成立.【点睛】本题考查等差等比数列,利用错位相减法求差比数列的前n项和,并讨论其最值,属于难题。20、(1);(2)【解析】

(1)根据垂直数量积为0求解即可.(2)根据平行的公式求解,再计算即可.【详解】解:(1)由已知得,,解得或.因为,所以.(2)若,则,所以或.因为,所以.所以,所以.【点睛】本题主要考查了向量垂直与平行的运用以及模长的计算,属于基础题型.21、(1)圆:.(2)证明见解析;,.【解析】

(1)设出圆心坐标,利用点到直线距离公式以及圆的弦长列方程,解方程求得圆心坐标,进而求得圆的方程.(2)设出点坐标,根据过圆的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论