版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省虎林市东方红林业局中学2025届高一数学第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.设等差数列{an}的前n项和为Sn,a2+a4=6,则S5等于()A.10 B.12 C.15 D.302.在中,分别是角的对边,,则角为()A. B. C. D.或3.若圆上有且仅有两点到直线的距离等于1,则实数r的取值范围为()A. B. C. D.4.下列各角中与角终边相同的角是A. B. C. D.5.在中,角的对边分别为,且.若为钝角,,则的面积为()A. B. C. D.56.若圆上有且仅有两个点到直线的距离等于,则的取值范围是()A. B. C. D.7.的内角的对边分别为成等比数列,且,则等于()A. B. C. D.8.已知实数m,n满足不等式组则关于x的方程x2-(3m+2n)x+6mn=0的两根之和的最大值和最小值分别是()A.7,-4 B.8,-8C.4,-7 D.6,-69.经过平面α外两点,作与α平行的平面,则这样的平面可以作()A.1个或2个B.0个或1个C.1个D.0个10.某校进行了一次消防安全知识竞赛,参赛学生的得分经统计得到如图的频率分布直方图,若得分在的有60人,则参赛学生的总人数为()A.100 B.120 C.150 D.200二、填空题:本大题共6小题,每小题5分,共30分。11.已知无穷等比数列的所有项的和为,则首项的取值范围为_____________.12.在中,,,,则的面积等于______.13.在数列中,,是其前项和,当时,恒有、、成等比数列,则________.14.如图,在圆心角为,半径为2的扇形AOB中任取一点P,则的概率为________.15.已知,,则______.16.不等式的解集为_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在三棱锥中,点,分别是,的中点,,.求证:⑴平面;⑵.18.已知f(x)=ax+ka﹣x(a>0且a≠1)是R上的奇函数,且f(1).(1)求f(x)的解析式;(2)若关于x的方程f(1)+f(1﹣3mx﹣2)=0在区间[0,1]内只有一个解,求m取值集合;(3)是否存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立?若存在,求出所有n的值若不存在,说明理由19.已知平面向量,,.(1)若,求的值;(2)若,与共线,求实数的值.20.已知数列满足:,(1)求,的值;(2)求数列的通项公式;(3)设,数列的前n项和,求证:21.在△ABC中,D为BC边上一点,,设,.(1)试、用表示;(2)若,,且与的夹角为60°,求及的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】因为等差数列{an}中,a2+a4=6,故a1+a5=6,所以S5===15.故选C.2、D【解析】
由正弦定理,可得,即可求解的大小,得到答案.【详解】在中,因为,由正弦定理,可得,又由,且,所以或,故选D.【点睛】本题主要考查了正弦定理的应用,其中解答中熟练利用正弦定理,求得的值是解答的关键,着重考查了推理与运算能力,属于基础题.3、B【解析】因为圆心(5,1)到直线4x+3y+2=0的距离为=5,又圆上有且仅有两点到直线4x+3y+2=0的距离为1,则4<r<6.选B.点睛:判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.4、B【解析】
根据终边相同角的概念,即可判断出结果.【详解】因为,所以与是终边相同的角.故选B【点睛】本题主要考查终边相同的角,熟记有关概念即可,属于基础题型.5、B【解析】
先由正弦定理求出c的值,再由C角为锐角求出C角的正余弦值,利用角C的余弦公式求出b的值,带入,及可求出面积.【详解】因为,,所以.又因为,且为锐角,所以,.由余弦定理得:,解得,所以.故选B.【点睛】本题考查利用正余弦定理解三角形,三角形的面积公式,属于中档题.6、B【解析】
先求出圆心到直线的距离,然后结合图象,即可得到本题答案.【详解】由题意可得,圆心到直线的距离为,故由图可知,当时,圆上有且仅有一个点到直线的距离等于;当时,圆上有且仅有三个点到直线的距离等于;当则的取值范围为时,圆上有且仅有两个点到直线的距离等于.故选:B【点睛】本题主要考查直线与圆的综合问题,数学结合是解决本题的关键.7、B【解析】
成等比数列,可得,又,可得,利用余弦定理即可得出.【详解】解:成等比数列,,又,,则故选B.【点睛】本题考查了等比数列的性质、余弦定理,考查了推理能力与计算能力,属于中档题.8、A【解析】由题意得,方程的两根之和,画出约束条件所表示的平面区域,如图所示,由,可得,此时,由,可得,此时,故选A.9、B【解析】若平面α外的两点所确定的直线与平面α平行,则过该直线与平面α平行的平面有且只有一个;若平面α外的两点所确定的直线与平面α相交,则过该直线的平面与平面α平行的平面不存在;故选B.10、C【解析】
根据频率分布直方图求出得分在的频率,即可得解.【详解】根据频率分布直方图可得:得分在的频率0.35,得分在的频率0.3,得分在的频率0.2,得分在的频率0.1,所以得分在的频率0.05,得分在的频率为0.4,有60人,所以参赛学生的总人数为60÷0.4=150人.故选:C【点睛】此题考查根据频率分布直方图求某组的频率,根据频率分布直方图的特征计算小矩形的面积,根据总面积之和为1计算未知数,结合频率频数计算总人数.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
设等比数列的公比为,根据题意得出或,根据无穷等比数列的和得出与所满足的关系式,由此可求出实数的取值范围.【详解】设等比数列的公比为,根据题意得出或,由于无穷等比数列的所有项的和为,则,.当时,则,此时,;当时,则,此时,.因此,首项的取值范围是.故答案为:.【点睛】本题考查利用无穷等比数列的和求首项的取值范围,解题的关键就是结合题意得出首项和公比的关系式,利用不等式的性质或函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.12、【解析】
先用余弦定理求得,从而得到,再利用正弦定理三角形面积公式求解.【详解】因为在中,,,由余弦定理得,所以由正弦定理得故答案为:【点睛】本题主要考查正弦定理和余弦定理的应用,还考查了运算求解的能力,属于中档题.13、.【解析】
由题意得出,当时,由,代入,化简得出,利用倒数法求出的通项公式,从而得出的表达式,于是可求出的值.【详解】当时,由题意可得,即,化简得,得,两边取倒数得,,所以,数列是以为首项,以为公差的等差数列,,,则,因此,,故答案为:.【点睛】本题考查数列极限的计算,同时也考查了数列通项的求解,在含的数列递推式中,若作差法不能求通项时,可利用转化为的递推公式求通项,考查分析问题和解决问题的能力,综合性较强,属于中等题.14、【解析】
根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设,由数量积的计算公式可得满足的区域,求出其面积,代入几何概率的计算公式即可求解.【详解】根据题意,建立如图的坐标系,则则扇形的面积为设若,则有,即;则满足的区域为如图的阴影区域,直线与弧的交点为,易得的坐标为,则阴影区域的面积为故的概率故答案为:【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.15、【解析】
由,然后利用两角差的正切公式可计算出的值.【详解】.故答案为:.【点睛】本题考查利用两角差的正切公式求值,解题的关键就是弄清所求角与已知角之间的关系,考查计算能力,属于基础题.16、【解析】.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)见证明【解析】
(1)由中位线定理即可说明,由此证明平面;(2)首先证明平面,由线面垂直的性质即可证明【详解】证明:⑴因为在中,点,分别是,的中点所以又因平面,平面从而平面⑵因为点是的中点,且所以又因,平面,平面,故平面因为平面所以【点睛】本题考查线面平行、线面垂直的判定以及线面垂直的性质,属于基础题.18、(1)f(x)=1x﹣1﹣x(2)(﹣∞,2]∪{4}(1)存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立,且n的值为1,2,1【解析】
(1)利用奇函数的性质及f(1)列出方程组,解方程组即可得到函数解析式;
(2)结合函数单调性和函数的奇偶性脱去符号,转化为二次函数的零点分布求解;
(1)分离得,由,得到的范围,由此得出结论.的范围【详解】(1)由题意,,解得,∴f(x)=1x﹣1﹣x;(2)由指数函数的性质可知,函数f(x)=1x﹣1﹣x为R上的增函数,故方程f(91)+f(1﹣1mx﹣2)=0即为,即故g(x)=2mx2﹣(4+m)x+2=0在区间[0,1]内只有一个解,①当m=0时,,符合题意;②当m≠0时,由g(0)=2>0,故只需g(1)=2m﹣4﹣m+2≤0,则m≤2且m≠0;③当△=(4+m)2﹣16m=0时,m=4,此时,符合题意;综上,实数m的取值范围为(﹣∞,2]∪{4};(1)f(2x)≥(n﹣1)f(x)即为,∵1x+1﹣x≥2,当且即当“x=0”时取等号,∴n﹣1≤2,即n≤1,∴存在正整数n,使不得式f(2x)≥(n﹣1)f(x)对一切x∈[﹣1,1]均成立,且n的值为1,2,1.【点睛】本题考查函数的性质,函数与方程的综合运用,考查转化思想及分类讨论思想,属于中档题.19、(1);(2)4.【解析】
(1)结合已知求得:,利用平面向量的模的坐标表示公式计算得解.(2)求得:,利用与共线可列方程,解方程即可.【详解】解:(1),所以.(2),因为与共线,所以,解得.【点睛】本题主要考查了平面向量的模的坐标公式及平面向量平行的坐标关系,考查方程思想及计算能力,属于基础题.20、(1);;(2)(3)见证明;【解析】
(1)令可求得;(2)在已知等式基础上,用代得另一等式,然后相减,可求得,并检验一下是否适合此表达式;(3)用裂项相消法求和.【详解】解:(1)由已知得,∴(2)由,①
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职会展服务与管理(展会接待礼仪)试题及答案
- 2025年高职计算机网络(网络故障诊断)试题及答案
- 2025年大二(国际政治)国际政治经济学测试卷
- 2025年中职(计算机应用)表格制作阶段测试题及答案
- 2025年高职(医学检验技术)分子生物学检验综合测试题及答案
- 2025年大学一年级(健康服务与管理)健康管理学基础试题及答案
- 2025年大学大一(法学)民法总论基础试题及答案
- 2025年大学农业工程(农业工程专业知识测试)试题及答案
- 2025年中职工业机器人系统操作与运维(故障诊断)试题及答案
- 2025年高职(环境监测技术)水质监测分析综合测试试题及答案
- 高校科研经费存在问题及对策建议
- (2024年)幼师必备幼儿园安全教育PPT《交通安全》
- 缩水机安全操作规程
- 颅内压波形分析
- 中国消化内镜内痔诊疗指南及操作共识(2023年)
- 2023年高校教师资格证之高等教育学真题及答案
- dosm新人落地训练全流程课程第五步三次面谈
- JJF 1798-2020隔声测量室校准规范
- GB/T 29516-2013锰矿石水分含量测定
- 石湖矿综采放顶煤可行性技术论证1
- DB11 1505-2022 城市综合管廊工程设计规范
评论
0/150
提交评论