宁夏银川十五中2025届九年级数学第一学期期末综合测试模拟试题含解析_第1页
宁夏银川十五中2025届九年级数学第一学期期末综合测试模拟试题含解析_第2页
宁夏银川十五中2025届九年级数学第一学期期末综合测试模拟试题含解析_第3页
宁夏银川十五中2025届九年级数学第一学期期末综合测试模拟试题含解析_第4页
宁夏银川十五中2025届九年级数学第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏银川十五中2025届九年级数学第一学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一元二次方程的根是()A. B. C. D.2.用配方法解方程,下列配方正确的是()A. B.C. D.3.如果某人沿坡度为的斜坡前进10m,那么他所在的位置比原来的位置升高了()A.6m B.8m C.10m D.12m4.如图,若绕点按逆时针方向旋转后能与重合,则().A. B. C. D.5.下列函数中,y关于x的二次函数是()A.y=ax2+bx+c B.y=x(x﹣1)C.y= D.y=(x﹣1)2﹣x26.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)7.一元二次方程3x2﹣x﹣2=0的二次项系数是3,它的一次项系数是()A.﹣1 B.﹣2 C.1 D.08.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,设每次降价的百分率为x,根据题意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1089.已知一元二次方程x2+kx-3=0有一个根为1,则k的值为()A.−2 B.2 C.−4 D.410.如图,在Rt△ABC中BC=2,以BC的中点O为圆心的⊙O分别与AB,AC相切于D,E两点,的长为()A. B. C.π D.2π11.在中,,则的正切值为()A. B. C. D.12.如图,一个可以自由转动的转盘被平均分成7个大小相同的扇形,每个扇形上分别写有“中”、“国”、“梦”三个字指针的位置固定,转动转盘停止后,指针指向“中”字所在扇形的概率是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出______个.14.点A(m,n﹣2)与点B(﹣2,n)关于原点对称,则点A的坐标为_____.15.如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D.与BC相交于点E,且BD=3,AD=6,△ODE的面积为15,若动点P在x轴上,则PD+PE的最小值是_____.16.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是______.17.如图,小杨沿着有一定坡度的坡面前进了5米,这个坡面的坡度为1:2,此时他与水平地面的垂直距离为____米.18.如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是_____m(结果保留根号)三、解答题(共78分)19.(8分)如图,点D、E分别在的边AB、AC上,若,,.求证:∽;已知,AD::3,,求AC的长.20.(8分)在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板AB始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC绕着转轴B旋转.已知连接杆BC的长度为20cm,BD=cm,压柄与托板的长度相等.(1)当托板与压柄的夹角∠ABC=30°时,如图①点E从A点滑动了2cm,求连接杆DE的长度.(2)当压柄BC从(1)中的位置旋转到与底座垂直,如图②.求这个过程中,点E滑动的距离.(结果保留根号)21.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)在扇统计图中,表示“QQ”的扇形圆心角的度数为_____;根据这次统计数据了解到最受学生欢迎的沟通方式是______.(2)将条形统计图补充完整;(3)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.22.(10分)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.23.(10分)在中,,,以点为圆心、为半径作圆,设点为⊙上一点,线段绕着点顺时针旋转,得到线段,连接、.(1)在图中,补全图形,并证明.(2)连接,若与⊙相切,则的度数为.(3)连接,则的最小值为;的最大值为.24.(10分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).(1)请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;(2)以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.25.(12分)为增强中学生体质,篮球运球已列为铜陵市体育中考选考项目,某校学生不仅练习运球,还练习了投篮,下表是一名同学在罚球线上投篮的试验结果,根据表中数据,回答问题.投篮次数(n)50100150200250300500投中次数(m)286078104124153252(1)估计这名同学投篮一次,投中的概率约是多少?(精确到0.1)(2)根据此概率,估计这名同学投篮622次,投中的次数约是多少?26.在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为、、、四个等级,其中相应等级的得分依次为分,分,分,分.马老师将九年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在分及其以上的人数是_______人;(2)补全下表中、、的值:平均数(分)中位数(分)众数(分)方差一班二班(3)学校准备在这两个班中选一个班参加市级科学素养竞赛,你建议学校选哪个班参加?说说你的理由.

参考答案一、选择题(每题4分,共48分)1、D【解析】x2−3x=0,x(x−3)=0,∴x1=0,x2=3.故选:D.2、C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:等式两边同时加上一次项系数的绝对值一半的平方22,,∴;故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3、A【解析】设斜坡的铅直高度为3x,水平距离为4x,然后根据勾股定理求解即可.【详解】设斜坡的铅直高度为3x,水平距离为4x,由勾股定理得9x2+16x2=100,∴x=2,∴3x=6m.故选A.【点睛】此题主要考查坡度坡角及勾股定理的运用,需注意的是坡度是坡角的正切值,是铅直高度h和水平宽l的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是.4、D【分析】根据旋转的性质知,,然后利用三角形内角和定理进行求解.【详解】∵绕点按逆时针方向旋转后与重合,∴,,∴,故选D.【点睛】本题考查了旋转的性质,三角形内角和定理,熟知旋转角的定义与旋转后对应边相等是解题的关键.5、B【分析】判断一个函数是不是二次函数,在关系式是整式的前提下,如果把关系式化简整理(去括号、合并同类项)后,能写成y=ax2+bx+c(a,b,c为常数,a≠0)的形式,那么这个函数就是二次函数,否则就不是.【详解】A.当a=0时,y=ax2+bx+c=bx+c,不是二次函数,故不符合题意;B.y=x(x﹣1)=x2-x,是二次函数,故符合题意;C.的自变量在分母中,不是二次函数,故不符合题意;D.y=(x﹣1)2﹣x2=-2x+1,不是二次函数,故不符合题意;故选B.【点睛】本题考查了二次函数的定义,一般地,形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数叫做二次函数,据此求解即可.6、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.7、A【解析】根据一元二次方程一次项系数的定义即可得出答案.【详解】由一元二次方程一次项系数的定义可知一次项系数为﹣1,故选:A.【点睛】本题考查的是一元二次方程的基础知识,比较简单,需要熟练掌握.8、A【分析】设每次降价的百分率为x,根据降价后的价格=降价前的价格(1-降价的百分率),则第一次降价后的价格是168(1-x),第二次后的价格是168(1-x)2,据此即可列方程求解.【详解】设每次降价的百分率为x,根据题意得:168(1-x)2=1.故选A.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.9、B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,

解得k=1.

故选B.点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10、B【分析】连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.【详解】连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=AC,∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=2∴由勾股定理可知AB=2,∴r=1,∴==故选B【点睛】此题考查切线的性质,弧长的计算,解题关键在于作辅助线11、B【解析】根据锐角三角函数的定义求出即可.【详解】解:∵在Rt△ABC中,∠C=90°,AC=1,BC=3,∴∠B的正切值为=,故选B.【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键.12、B【分析】直接利用概率公式计算求解即可.【详解】转动转盘停止后,指针指向“中”字所在扇形的概率是,故选:B.【点睛】本题考查概率的计算,解题的关键是熟练掌握概率的计算公式.二、填空题(每题4分,共24分)13、4【解析】试题分析:如图,能画4个,分别是:以D为圆心,AB为半径画圆;以C为圆心,CA为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形;以D为圆心,AC为半径画圆;以E为圆心,AB为半径画圆.两圆相交于两点(DE上下各一个),分别于D、E连接后,可得到两个三角形.因此最多能画出4个考点:作图题.14、(2,﹣1).【解析】关于原点对称的两个坐标点,其对应横纵坐标互为相反数.【详解】解:由题意得m=2,n-2=-n,解得n=1,故A点坐标为(2,﹣1).【点睛】本题考查了关于原点中心对称的两个坐标点的特点.15、.【分析】根据所给的三角形面积等于长方形面积减去三个直角三角形的面积,求得B和E的坐标,然后E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,利用勾股定理即可求得E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小.【详解】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,∵BD=3,AD=6,∴AB=9,设B点的坐标为(9,b),∴D(6,b),∵D、E在反比例函数的图象上,∴6b=k,∴E(9,b),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=9b﹣k﹣k﹣•3•(b﹣b)=15,∴9b﹣6b﹣b=15,解得:b=6,∴D(6,6),E(9,4),作E点关于x的对称得E′,则E′(9,﹣4),连接DE′,交x轴于P,此时,PD+PE=PD+PE′=DE′最小,∵AB=9,BE′=6+4=10,∴DE′==,故答案为.【点睛】本题考查反比例函数系数k的几何意义,解题的关键是利用过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式,本题属于中等题型.16、k<5且k≠1.【解析】试题解析:∵关于x的一元二次方程有两个不相等的实数根,解得:且故答案为且17、【分析】设BC=x,则AB=2x,再根据勾股定理得到x2+(2x)2=52,再方程的解即可.【详解】如图所示:设BC=x,则AB=2x,依题意得:x2+(2x)2=52解得x=或x=-(舍去).故答案为:.【点睛】考查了解直角三角形,解决本题的关键是构造直角三角形利用勾股定理得出.18、40【解析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系即可得出答案.【详解】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°=,解得:CD=40(m),故答案为40.【点睛】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.三、解答题(共78分)19、(1)证明见解析;(2)【分析】(1)根据三角形内角和证明即可证明三角形相似,(2)根据相似三角形对应边成比例即可解题.【详解】(1)证明:,(2)由得:【点睛】本题考查了相似三角形的判定和性质,中等难度,熟悉证明三角形相似的方法是解题关键.20、(1)DE=2cm;(2)这个过程中,点E滑动的距离(18-6)cm.【解析】(1)如图1中,作DH⊥BE于H.求出DH,BH即可解决问题.(2)解直角三角形求出BE即可解决问题.【详解】(1)如图1中,作DH⊥BE于H.在Rt△BDH中,∵∠DHB=90°,BD=4cm,∠ABC=30°,∴DH=BD=2(cm),BH=DH=6(cm),∵AB=CB=20cm,AE=2cm,∴EH=20-2-6=12(cm),∴DE===2(cm).(2)在Rt△BDE中,∵DE=2,BD=4,∠DBE=90°,∴BE==6(cm),∴这个过程中,点E滑动的距离(18-6)cm.【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识.21、(1)108°,微信;(2)见解析;(3)【分析】(1)根据喜欢电话沟通的人数与百分比即可求出共抽查人数,求出使用QQ的百分比即可求出QQ的扇形圆心角度数,根据总人数及所占百分比即可求出使用短信的人数,总人数减去除微信之外的四种方式的人数即可得到使用微信的人数.

(2)根据短信与微信的人数即可补全条形统计图.(3)列出树状图分别求出所有情况以及甲、乙两名同学恰好选中同一种沟通方式的情况后,利用概率公式即可求出甲、乙两名同学恰好选中同一种沟通方式的概率.【详解】解:(1)喜欢用电话沟通的人数为20,所占百分比为20%,

∴此次共抽查了:20÷20%=100人

喜欢用QQ沟通所占比例为:,∴“QQ”的扇形圆心角的度数为:360°×=108°,喜欢用短信的人数为:100×5%=5(人)

喜欢用微信的人数为:100−20−5−30−5=40(人),∴最受学生欢迎的沟通方式是:微信,故答案为:108°,微信;(2)补全条形图如下:(3)列出树状图,如图所示所有情况共有9种情况,其中两人恰好选中同一种沟通方式共有3种情况,

甲、乙两名同学恰好选中同一种沟通方式的概率为:.【点睛】本题考查统计与概率,解题的关键是熟练运用统计与概率的相关公式,本题属于中等题型.22、(1)见解析;(2)证明见解析;(3)FH=2.【解析】(1)先求出AB,BC,AC,再分情况求出CD或AD,即可画出图形;(2)先判断出∠A+∠ADB=140°=∠ADC,即可得出结论;(3)先判断出△FEH∽△FHG,得出FH2=FE•FG,再判断出EQ=FE,继而求出FG•FE=8,即可得出结论.【详解】(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴或,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFH与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴EQ=FE•sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG•FE=8,∴FH2=FE•FG=8,∴FH=2.【点睛】本题考查了相似三角形的综合题,涉及到新概念、相似三角形的判定与性质等,正确理解新概念,熟练应用相似三角形的相关知识是解题的关键.23、(1)证明见解析;(2)或;(3)【分析】(1)根据题意,作出图像,然后利用SAS证明,即可得到结论;(2)根据题意,由与⊙相切,得到∠BMN=90°,结合点M的位置,即可求出的度数;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;当点N落在BA延长线上时,BN的值最大,分别求出BN的值,即可得到答案.【详解】解:(1)如图,补全图形,证明:,∵,,;(2)根据题意,连接MN,∵与⊙相切,∴∠BMN=90°,∵△MNC是等腰直角三角形,∴∠CMN=45°,如上图所示,∠BMC=;如上图所示,∠BMC=;综合上述,的度数为:或;故答案为:或;(3)根据题意,当点N恰好落在线段AB上时,BN的值最小;如图所示,∵AN=BM=1,∵,∴;当点N落在BA延长线上时,BN的值最大,如图所示,由AN=BN=1,∴BN=BA+AN=2+1=3;∴的最小值为1;的最大值为3;故答案为:1,3.【点睛】本题考查了圆的性质,全等三角形的旋转模型,等腰直角三角形的判定和性质,以及勾股定理,解题的关键是熟练掌握圆的动点问题,注意利用数形结合和分类讨论的思想进行解题.24、(1)见解析(2)【解析】试题分析:(1)直接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论