版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
查补培优冲刺02几何最值类综合压轴题型一:几何最值模型--将军饮马(遛马、造桥)模型题型二:几何最值模型--费马点模型题型三:几何最值模型--胡不归模型题型四:几何最值模型--瓜豆模型(原理)题型五:几何最值模型--阿氏圆模型题型六:几何最值工具--二次函数求最值题型七:几何最值工具--三边关系求最值题型一:几何最值模型--将军饮马(遛马、造桥)模型1.将军饮马问题从本质上来看是由轴对称衍生而来,主要考查转化与化归等的数学思想。在解决将军饮马模型主要依据是:两点之间,线段最短;垂线段最短。2.在解决将军遛马和将军过桥(造桥),不管是横向还是纵向的线段长度(定长),只要将线段按照长度方向平移即可,即可以跨越长度转化为标准的将军饮马模型,再依据同侧做对称点变异侧,异侧直接连线即可。利用数学的转化思想,将复杂模型变成基本模型就简单容易多了,从此将军遛马和将军过桥(造桥)再也不是问题!例1.(2023·广东广州·统考中考真题)如图,正方形的边长为4,点E在边上,且,F为对角线上一动点,连接,,则的最小值为.
【答案】【分析】连接交于一点F,连接,根据正方形的对称性得到此时最小,利用勾股定理求出即可.【详解】解:如图,连接交于一点F,连接,
∵四边形是正方形,∴点A与点C关于对称,∴,∴,此时最小,∵正方形的边长为4,∴,∵点E在上,且,∴,即的最小值为故答案为:.【点睛】此题考查正方形的性质,熟练运用勾股定理计算是解题的关键.变式1.(2023·黑龙江绥化·统考中考真题)如图,是边长为的等边三角形,点为高上的动点.连接,将绕点顺时针旋转得到.连接,,,则周长的最小值是.
【答案】/【分析】根据题意,证明,进而得出点在射线上运动,作点关于的对称点,连接,设交于点,则,则当三点共线时,取得最小值,即,进而求得,即可求解.【详解】解:∵为高上的动点.∴∵将绕点顺时针旋转得到.是边长为的等边三角形,∴∴∴,∴点在射线上运动,如图所示,
作点关于的对称点,连接,设交于点,则在中,,则,则当三点共线时,取得最小值,即∵,,∴∴在中,,∴周长的最小值为,故答案为:.【点睛】本题考查了轴对称求线段和的最值问题,等边三角形的性质与判定,全等三角形的性质与判定,勾股定理,熟练掌握等边三角形的性质与判定以及轴对称的性质是解题的关键.变式2.(2023·陕西西安·校考模拟预测)如图,在菱形中,,对角线交于点,,点为的中点,点为上一点,且,点为上一动点,连接,则的最大值为________.
【答案】【分析】作的对称点,连接并延长交于点,根据三角形三边关系可得到,最后根据等边三角形的性质及菱形的性质即可解答.【详解】解:作的对称点,连接并延长交于点,∴,∴,当在同一条直线上时,有最大值,∵在菱形中,,∴,,∴是等边三角形,∴,,,∵,∴,∵,∴,∵点为的中点,∴为的中点,∴,∴,∴是等边三角形,∴,故答案为;
【点睛】本题考查了等边三角形的性质与判定,菱形的性质,中点的定义,三角形的三边关系,掌握等边三角形的性质及菱形的性质是解题的关键.例2.(2022·四川自贡·中考真题)如图,矩形中,,是的中点,线段在边上左右滑动;若,则的最小值为____________.【答案】【分析】如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,可得四边形EFCH是平行四边形,从而得到G'H=EG'+EH=EG+CF,再由勾股定理求出HG'的长,即可求解.【详解】解:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∴G'E=GE,AG=AG',∵四边形ABCD是矩形,∴AB∥CD,AD=BC=2∴CH∥EF,∵CH=EF=1,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴AG=AG'=1∴DG′=AD+AG'=2+1=3,DH=4-1=3,∴,即的最小值为.故答案为:【点睛】此题主要考查了利用轴对称求最短路径问题,矩形的性质,勾股定理等知识,确定GE+CF最小时E,F位置是解题关键.变式1.(2023上·江苏盐城·九年级校联考阶段练习)如图,正方形内接于⊙O,线段在对角线上运动,若⊙O的周长为,,则周长的最小值是.
【答案】/【分析】过点作,令;可推出四边形为平行四边形,有;根据可知当时,周长有最小值.【详解】解:过点作,令
∵⊙O的周长为,∴⊙O的半径为∴∵且∴四边形为平行四边形∴由正方形的对称性可得:∴∴故:当时,周长有最小值此时:∴周长的最小值是故答案为:【点睛】本题考查了正方形的性质、平行四边形的判定与性质等.推出当时,周长有最小值是解题关键.变式2.(2023·广西·二模)已知,在河的两岸有A,B两个村庄,河宽为4千米,A、B两村庄的直线距离AB=10千米,A、B两村庄到河岸的距离分别为1千米、3千米,计划在河上修建一座桥MN垂直于两岸,M点为靠近A村庄的河岸上一点,则AM+BN的最小值为(
)A.2 B.1+3 C.3+ D.【答案】A【分析】作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故MB′=BN;根据“两点之间线段最短”,AB′最短,即AM+BN最短,此时AM+BN=AB′.【详解】解:如图,作BB'垂直于河岸,使BB′等于河宽,连接AB′,与靠近A的河岸相交于M,作MN垂直于另一条河岸,则MN∥BB′且MN=BB′,于是MNBB′为平行四边形,故MB′=BN.根据“两点之间线段最短”,AB′最短,即AM+BN最短.∵AB=10千米,BC=1+3+4=8千米,∴在RT△ABC中,,在RT△AB′C中,B′C=1+3=4千米,∴AB′=千米;故选A.【点睛】本题考查了轴对称—最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化.题型二:几何最值模型--费马点模型结论:如图,点M为△ABC内任意一点,连接AM、BM、CM,当M与三个顶点连线的夹角为120°时,MA+MB+MC的值最小。费马点最值模型的辅助线作法:如图,以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.当E、N、M、C四点共线时,MA+MB+MC的值最小,即为EC的长度。例1.(2023·湖北随州·统考中考真题)1643年,法国数学家费马曾提出一个著名的几何问题:给定不在同一条直线上的三个点A,B,C,求平面上到这三个点的距离之和最小的点的位置,意大利数学家和物理学家托里拆利给出了分析和证明,该点也被称为“费马点”或“托里拆利点”,该问题也被称为“将军巡营”问题.(1)下面是该问题的一种常见的解决方法,请补充以下推理过程:(其中①处从“直角”和“等边”中选择填空,②处从“两点之间线段最短”和“三角形两边之和大于第三边”中选择填空,③处填写角度数,④处填写该三角形的某个顶点)当的三个内角均小于时,如图1,将绕,点C顺时针旋转得到,连接,
由,可知为①三角形,故,又,故,由②可知,当B,P,,A在同一条直线上时,取最小值,如图2,最小值为,此时的P点为该三角形的“费马点”,且有③;已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.如图3,若,则该三角形的“费马点”为④点.(2)如图4,在中,三个内角均小于,且,已知点P为的“费马点”,求的值;
(3)如图5,设村庄A,B,C的连线构成一个三角形,且已知.现欲建一中转站P沿直线向A,B,C三个村庄铺设电缆,已知由中转站P到村庄A,B,C的铺设成本分别为a元/,a元/,元/,选取合适的P的位置,可以使总的铺设成本最低为___________元.(结果用含a的式子表示)【答案】(1)①等边;②两点之间线段最短;③;④A.(2)(3)【分析】(1)根据旋转的性质和两点之间线段最短进行推理分析即可得出结论;(2)根据(1)的方法将绕,点C顺时针旋转得到,即可得出可知当B,P,,A在同一条直线上时,取最小值,最小值为,在根据可证明,由勾股定理求即可,(3)由总的铺设成本,通过将绕,点C顺时针旋转得到,得到等腰直角,得到,即可得出当B,P,,A在同一条直线上时,取最小值,即取最小值为,然后根据已知和旋转性质求出即可.【详解】(1)解:∵,∴为等边三角形;∴,,又,故,由两点之间线段最短可知,当B,P,,A在同一条直线上时,取最小值,最小值为,此时的P点为该三角形的“费马点”,∴,,∴,,又∵,∴,∴,∴;∵,∴,,∴,,∴三个顶点中,顶点A到另外两个顶点的距离和最小.又∵已知当有一个内角大于或等于时,“费马点”为该三角形的某个顶点.∴该三角形的“费马点”为点A,故答案为:①等边;②两点之间线段最短;③;④.(2)将绕,点C顺时针旋转得到,连接,由(1)可知当B,P,,A在同一条直线上时,取最小值,最小值为,
∵,∴,又∵∴,由旋转性质可知:,∴,∴最小值为,(3)∵总的铺设成本∴当最小时,总的铺设成本最低,将绕,点C顺时针旋转得到,连接,由旋转性质可知:,,,,∴,∴,当B,P,,A在同一条直线上时,取最小值,即取最小值为,过点作,垂足为,∵,,∴,∴,∴,∴,∴的最小值为总的铺设成本(元)故答案为:【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,利用旋转作出正确的辅助线是解本题的关键.变式1.(2023·江苏·校考三模)如图,四个村庄坐落在矩形ABCD的四个顶点上,公里,公里,现在要设立两个车站E,F,则的最小值为______公里.【答案】15+10【分析】将△AEB绕A顺时针旋转60°得△AGH,连接BH、EG,将△DFC绕点D逆时针旋转60°得到△DF'M,连接CM、FM、FF',如图2,此时EH、EF、FM共线,EA+EB+EF+FC+FD是最小值,利用旋转的性质和等边三角形的性质,相加即可得出结论.【详解】解:如图1,将△AEB绕A顺时针旋转60°得△AGH,连接BH、EG,将△DFC绕点D逆时针旋转60°得到△DF'M,连接CM、FF',由旋转得:AB=AH,AE=AG,∠EAG=∠BAH=60°,BE=GH,∴△AEG和△ABH是等边三角形,∴AE=EG,同理得:△DFF'和△DCM是等边三角形,DF=FF',FC=F'M,∴当H、G、E、F、F'、M在同一条直线上时,EA+EB+EF+FC+FD有最小值,如图2,∵AH=BH,DM=CM,∴HM是AB和CD的垂直平分线,∴HM⊥AB,HM⊥CD,∵AB=10,∴△ABH的高为5,∴EA+EB+EF+FC+FD=EG+GH+EF+FF'+F'M=HM=15+5+5=15+10,则EA+EB+EF+FC+FD的最小值是(15+10)公里.故答案为:(15+10).【点睛】本题考查了矩形的性质和最短路径问题,旋转的性质和等边三角形的性质,确定最小值时点E和F的位置是本题的关键,利用全等、勾股定理求其边长,从而得出结论.变式2.(2023·广东广州·一模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点P是AB边上一动点,作PD⊥BC于点D,线段AD上存在一点Q,当QA+QB+QC的值取得最小值,且AQ=2时,则PD=________.【答案】【分析】如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,当点A,点Q,点N,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC,证明AM垂直平分BC,证明AD=BD,此时P与D重合,设PD=x,则DQ=x-2,构建方程求出x可得结论.【详解】解:如图1,将△BQC绕点B顺时针旋转60°得到△BNM,连接QN,∴BQ=BN,QC=NM,∠QBN=60°,∴△BQN是等边三角形,∴BQ=QN,∴QA+QB+QC=AQ+QN+MN,∴当点A,点Q,点N,点M共线时,QA+QB+QC值最小,此时,如图2,连接MC∵将△BQC绕点B顺时针旋转60°得到△BNM,∴BQ=BN,BC=BM,∠QBN=60°=∠CBM,∴△BQN是等边三角形,△CBM是等边三角形,∴∠BQN=∠BNQ=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BQD=60°,∴BD=QD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,此时P与D重合,设PD=x,则DQ=x-2,∴x=,∴x=3+,∴PD=3+.故答案为:.【点睛】本题主要考查了等腰直角三角形的性质,旋转的性质,等边三角形的判定和性质,解题的关键是正确运用等边三角形的性质解决问题,学会构建方程解决问题.题型三:几何最值模型--胡不归模型【模型解读】一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,A、B为定点,点C在直线MN上,确定点C的位置使的值最小。(注意与阿氏圆模型的区分)。1),记,即求BC+kAC的最小值.2)构造射线AD使得sin∠DAN=k,,CH=kAC,将问题转化为求BC+CH最小值.3)过B点作BH⊥AD交MN于点C,交AD于H点,此时BC+CH取到最小值,即BC+kAC最小.【解题关键】在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.(若k>1,则提取系数,转化为小于1的形式解决即可)。例1.(2023·辽宁锦州·统考中考真题)如图,在中,,,,按下列步骤作图:①在和上分别截取、,使.②分别以点D和点E为圆心,以大于的长为半径作弧,两弧在内交于点M.③作射线交于点F.若点P是线段上的一个动点,连接,则的最小值是.【答案】【分析】过点P作于点Q,过点C作于点H,先利用角平分线和三角形的内角和定理求出,然后利用含的直角三角的性质得出,则,当C、P、Q三点共线,且与垂直时,最小,最小值为,利用含的直角三角的性质和勾股定理求出,,最后利用等面积法求解即可.【详解】解:过点P作于点Q,过点C作于点H,由题意知:平分,∵,,∴,∴,∴,∴,∴当C、P、Q三点共线,且与垂直时,最小,最小值为,∵,,,∴,∴,∵,∴,即最小值为.故答案为:.【点睛】本题考查了尺规作图-作角平分线,含的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.变式1.(2023·广东佛山·校考一模)在边长为1的正方形中,是边的中点,是对角线上的动点,则的最小值为___________.【答案】0【分析】作于,可得出,从而得的最小值,将变形为,进一步得出结果.【详解】解:如图,作于,∵四边形是正方形,,,的最小值为0,∵,∴的最小值为0,故答案为:0.【点睛】本题考查了正方形的性质,解直角三角形等知识,解题关键是作辅助线转化线段.变式2.(2023·江苏宿迁·统考二模)已知中,,则的最大值为.
【答案】【分析】过点C作,垂足为D,取,即可说明是等腰直角三角形,求出,进一步求出,继而将转化为,推出点D在以为直径的圆上,从而可知当为等腰直角三角形时,最大,再求解即可.【详解】解:如图,过点C作,垂足为D,取,∴是等腰直角三角形,∴,∵,∴,∴,∴,∴,∴,∴,∵,而一定,∴当的面积最大时,最大,∵,∴点D在以为直径的圆上,∴当D平分时,点D到的距离最大,即高最大,则面积最大,此时,则为等腰直角三角形,∴,故答案为:.
.【点睛】本题考查了等腰直角三角形的判定和性质,勾股定理,含30度的直角三角形的性质,圆周角定理,解题的关键是添加辅助线,将最值转化为的长.题型四:几何最值模型--瓜豆模型(动态轨迹问题)瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。动点轨迹基本类型为直线型和圆弧型,本专题受教学进程影响,估只对瓜豆原理中的直线型轨迹作讲解。主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线上运动;瓜在圆周上运动,豆的轨迹也是圆。古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。例1.(2024·江苏无锡·一模)如图,是边长为6的等边三角形,点E在上且,点D是直线上一动点,将线段绕点E逆时针旋转,得到线段,连接,,下列结论:①的最小值为;
②的最小值是;③当时,;
④当时,.其中正确的有()
A.4个 B.3个 C.2个 D.1个【答案】B【分析】①由垂线段最短可知时,最小,最小,②寻找到点F在固定直线上运动即可判断;③点D可以在延长线上,不平行;④先证明是等边三角形,进而确定结果.【详解】解:∵是边长为6的等边三角形,点E在上且,∴.∵,,∴,∵时,最小,最小,当时,∵是等边三角形,∴,∴,∴,∴;故①正确;作于M,作,且使,作于G,连接,
∴,∴四边形是矩形,∴矩形是正方形,∵,∴,∵,∴,∴,∴点F在上,作,∴最小值是,延长交于H,∵,∴四边形是矩形,∴,∴,∴,故②正确;当时,D可以在的延长线上,故③不正确;当时,,∵,∴是等边三角形,∴,故④正确;综上,正确的有①②④,共3个,故选:B.【点睛】此题考查了等边三角形的性质,全等三角形的判定和性质,矩形的判定和性质,正方形的判定等知识,解题的关键是找出点F的运动轨迹.变式1.(2023·江苏镇江·一模)如图,正方形的边长为2,点是正方形对角线所在直线上的一个动点,连接,以为斜边作等腰(点A,E,F按逆时针排序),则长的最小值为()A. B.1 C. D.2【答案】B【分析】连接交于点,连接并延长交于点,由正方形的性质得,,,则,得,由,,证明,则,变形为,而,则,可推导出,则,所以,,可知点在的垂直平分线上运动,当点与点重合时,长的值最小,此时,于是得到问题的答案.【详解】解:连接交于点,连接并延长交于点,四边形是正方形,,,,,,,,,,于点,,,,,,,,,,,,,,,,,,点在的垂直平分线上运动,,当点与点重合时,的值最小,此时,长的最小值为1,故选:B.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、平行线分线段成比例定理、平行线的判定与性质、垂线段最短等知识,正确地作出所需要的辅助线是解题的关键.变式2.(2024·江苏徐州·一模)如图,直角中,,,,点是边上一点,将绕点顺时针旋转到点,则长的最小值是.【答案】2【分析】本题考查了旋转的性质,垂线段最短,全等三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.取的中点为点,连接,过点作,垂足为,在直角中,利用含30度角的直角三角形的性质可求出的长,的度数,再根据线段的中点定义可得,从而可得,然后利用旋转的性质可得:,,从而利用等式的性质可得,进而利用证明,最后利用全等三角形的性质可得,再根据垂线段最短,即可解答.【详解】解:取的中点为点,连接,过点作,垂足为,,,,,,,点是的中点,,,由旋转得:,,,,,,,,当时,即当点和点重合时,有最小值,且最小值为2,长的最小值是2,故答案为:2例1.(2023·山东泰安·统考中考真题)如图,在平面直角坐标系中,的一条直角边在x轴上,点A的坐标为;中,,连接,点M是中点,连接.将以点O为旋转中心按顺时针方向旋转,在旋转过程中,线段的最小值是(
)
A.3 B. C. D.2【答案】A【分析】如图所示,延长到E,使得,连接,根据点A的坐标为得到,再证明是的中位线,得到;解得到,进一步求出点C在以O为圆心,半径为4的圆上运动,则当点M在线段上时,有最小值,即此时有最小值,据此求出的最小值,即可得到答案.【详解】解:如图所示,延长到E,使得,连接,
∵的一条直角边在x轴上,点A的坐标为,∴,∴,∴,∵点M为中点,点A为中点,∴是的中位线,∴;在中,,∴,∵将以点O为旋转中心按顺时针方向旋转,∴点C在以O为圆心,半径为4的圆上运动,∴当点M在线段上时,有最小值,即此时有最小值,∵,∴的最小值为,∴的最小值为3,故选A.另解:取BO的中点为Q(-3,0),根据中位线可确定,故点M为以Q为圆心,MQ为半径的圆上运动,故AM的最小值为AQ-MQ=3【点睛】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.变式1.(2023·四川宜宾·统考中考真题)如图,是正方形边的中点,是正方形内一点,连接,线段以为中心逆时针旋转得到线段,连接.若,,则的最小值为.
【答案】【分析】连接,将以中心,逆时针旋转,点的对应点为,由的运动轨迹是以为圆心,为半径的半圆,可得:的运动轨迹是以为圆心,为半径的半圆,再根据“圆外一定点到圆上任一点的距离,在圆心、定点、动点,三点共线时定点与动点之间的距离最短”,所以当、、三点共线时,的值最小,可求,从而可求解.【详解】解,如图,连接,将以中心,逆时针旋转,点的对应点为,
的运动轨迹是以为圆心,为半径的半圆,的运动轨迹是以为圆心,为半径的半圆,如图,当、、三点共线时,的值最小,四边形是正方形,,,是的中点,,,由旋转得:,,,的值最小为.故答案:.【点睛】本题考查了正方形的性质,旋转的性质,勾股定理,动点产生的线段最小值问题,掌握相关的性质,根据题意找出动点的运动轨迹是解题的关键.变式2.(2022·江苏无锡·中考真题)△ABC是边长为5的等边三角形,△DCE是边长为3的等边三角形,直线BD与直线AE交于点F.如图,若点D在△ABC内,∠DBC=20°,则∠BAF=°;现将△DCE绕点C旋转1周,在这个旋转过程中,线段AF长度的最小值是.【答案】80/【分析】利用SAS证明△BDC≌△AEC,得到∠DBC=∠EAC=20°,据此可求得∠BAF的度数;利用全等三角形的性质可求得∠AFB=60°,推出A、B、C、F四个点在同一个圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,此时线段AF长度有最小值,据此求解即可.【详解】解:∵△ABC和△DCE都是等边三角形,∴AC=BC,DC=EC,∠BAC=∠ACB=∠DCE=60°,∴∠DCB+∠ACD=∠ECA+∠ACD=60°,即∠DCB=∠ECA,在△BCD和△ACE中,,∴△ACE≌△BCD(SAS),∴∠EAC=∠DBC,∵∠DBC=20°,∴∠EAC=20°,∴∠BAF=∠BAC+∠EAC=80°;设BF与AC相交于点H,如图:∵△ACE≌△BCD∴AE=BD,∠EAC=∠DBC,且∠AHF=∠BHC,∴∠AFB=∠ACB=60°,∴A、B、C、F四个点在同一个圆上,∵点D在以C为圆心,3为半径的圆上,当BF是圆C的切线时,即当CD⊥BF时,∠FBC最大,则∠FBA最小,∴此时线段AF长度有最小值,在Rt△BCD中,BC=5,CD=3,∴BD=4,即AE=4,∴∠FDE=180°-90°-60°=30°,∵∠AFB=60°,∴∠FDE=∠FED=30°,∴FD=FE,过点F作FG⊥DE于点G,∴DG=GE=,∴FE=DF==,∴AF=AE-FE=4-,故答案为:80;4-.【点睛】本题考查了旋转的性质,等边三角形的性质,圆周角定理,切线的性质,解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件.变式3.(2022·江苏宿迁·中考真题)如图,在矩形中,=6,=8,点、分别是边、的中点,某一时刻,动点从点出发,沿方向以每秒2个单位长度的速度向点匀速运动;同时,动点从点出发,沿方向以每秒1个单位长度的速度向点匀速运动,其中一点运动到矩形顶点时,两点同时停止运动,连接,过点作的垂线,垂足为.在这一运动过程中,点所经过的路径长是.【答案】/【分析】据题意知EF在运动中始终与MN交于点Q,且点H在以BQ为直径的上运动,运动路径长为的长,求出BQ及的圆角,运用弧长公式进行计算即可得到结果.【详解】解:∵点、分别是边、的中点,连接MN,则四边形ABNM是矩形,∴MN=AB=6,AM=BN=AD==4,根据题意知EF在运动中始终与MN交于点Q,如图,∵四边形ABCD是矩形,∴AD//BC,∴∴∴当点E与点A重合时,则NF=,∴BF=BN+NF=4+2=6,∴AB=BF=6∴是等腰直角三角形,∴∵BP⊥AF,∴由题意得,点H在以BQ为直径的上运动,运动路径长为长,取BQ中点O,连接PO,NO,∴∠PON=90°,又∴,∴,∴的长为=故答案为:【点睛】本题主要考查了相似三角形的判定与性质,勾股定理,圆周角定理,以及弧长等知识,判断出点H运动的路径长为长是解答本题的关键.题型五:几何最值模型--阿氏圆模型【模型解读】如图1所示,⊙O的半径为r,点A、B都在⊙O外,P为⊙O上一动点,已知r=k·OB,连接PA、PB,则当“PA+k·PB”的值最小时,P点的位置如何确定?如图2,在线段OB上截取OC使OC=k·r,则可说明△BPO与△PCO相似,即k·PB=PC。故本题求“PA+k·PB”的最小值可以转化为“PA+PC”的最小值,其中与A与C为定点,P为动点,故当A、P、C三点共线时,“PA+PC”值最小。如图3所示:例1.(2023·山东·九年级专题练习)如图,在中,,,,圆C半径为2,P为圆上一动点,连接最小值__________.最小值__________.【答案】
;
.【分析】如图,连接CP,在CB上取点D,使CD=1,连结AD,可证△PCD∽△BCP.可得PD=BP,当点A,P,D在同一条直线时,AP+BP的值最小,在Rt△ACD中,由CD=1,CA=6,根据勾股定理AD==即可;在AC上取CE=,△PCE∽△ACP.可得PE=AP,当点B,P,E在同一条直线时,BP+AP的值最小,在Rt△BCE中,由CE=,CB=4,根据勾股定理BE=即可.【详解】解:如图,连接CP,在CB上取点D,使CD=1,连结AD,∵CP=2,BC=4∴,∴,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴,∴PD=BP,∴AP+BP=AP+PD,当点A,P,D在同一条直线时,AP+BP的值最小,在Rt△ACD中,∵CD=1,CA=6,∴AD==,∴AP+BP的最小值为.故答案为:在AC上取CE=,连接CP,PE∵∴又∵∠PCE=∠ACP,∴△PCE∽△ACP.∴,∴PE=AP,∴BP+AP=BP+PE,当点B,P,E在同一条直线时,BP+AP的值最小,在Rt△BCE中,∵CE=,CB=4,∴BD=,∴BP+AP的最小值为.故答案为:.【点睛】本题考查圆的性质,构造相似三角形解决比例问题,勾股定理,掌握圆的性质,相似三角形的判定与性质,勾股定理,关键是引辅助线准确作出图形是解题关键.变式1.(2023春·江苏·九年级校考阶段练习)如图,正方形的边长为4,的半径为2,为上的动点,则的最大值是.【答案】2【分析】解法1,如图:以为斜边构造等腰直角三角形,连接,,连接、,推得,因为,求出即可求出答案.解法2:如图:连接、、,在上做点,使,连接,证明,在上做点,使,连接,证明,接着推导出,最后证明,即可求解.【详解】解法1:如图:以为斜边构造等腰直角三角形,连接,,∴,,四边形正方形,又,在与中,故答案为:2.解法2如图:连接、、根据题意正方形的边长为4,的半径为2,在上做点,使,则,连接在与中,,则在上做点,使,则,连接在与中,,则如图所示连接在与中,,故答案为:2.【点睛】本题考查正方形的性质,相似三角形,勾股定理等知识,难度较大,熟悉以上知识点运用是解题关键.变式2.(2023·江苏苏州·苏州市二模)如图,在中,点A、点在上,,,点在上,且,点是的中点,点是劣弧上的动点,则的最小值为.【答案】【分析】延长到,使得,连接,,利用相似三角形的性质证明,求的最小值问题转化为求的最小值.求出即可判断.【详解】解:延长到,使得,连接,.,,,,,,,,,,又在中,,,,,,的最小值为,故答案为:.【点睛】本题考查了相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.题型六:几何最值工具--二次函数求最值构造二次函数来确定几何图形中的有关的长度、面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质求解即可。例1.(2024·江苏扬州·一模)某数学小组在一次数学探究活动过程中,经历了如下过程:如图,正方形中,在边上任意一点(不与点重合),以为旋转中心,将逆时针旋转,得到,连接,,分别交于点,.(1)当时,的度数为______°;(2)连接,当P为中点时,求证:;(3)若,是否存在最小值?如果存在,求此最小值:如果不存在,说明理由.【答案】(1)65(2)见解析(3)存在,【分析】(1)由旋转的性质得出,,求出和的度数,则可得出答案;(2)过点作交延长线于,于,则,证明,得出,,证出是等腰直角三角形,则可得出答案;(3)连接,设,,则,由(2)可知,,证明,得出,可得出答案.【详解】(1)解:四边形是正方形,,将逆时针旋转得到,,,,,,,,故答案为:;(2)过点作交延长线于,于,连接,则,四边形是正方形,,,,,四边形为矩形,将逆时针旋转得到,,,,,,,,为的中点,,,四边形为正方形,,,是等腰直角三角形,;(3)存在.理由如下:连接,四边形是正方形,,,由勾股定理可知,当取最小值时,有最小值,而,当取最大值时,有最小值时,即:当取最大值时,有最小值,设,,则,由(2)可知,,,,,,时,有最大值,此时,,则,,即:当时,存在最小值,此时取得最小值为.【点睛】本题是四边形综合题,考查了旋转的性质,相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,矩形的判定,勾股定理,直角三角形的性质等知识,熟练掌握正方形的性质和矩形的性质,证明三角形相似和三角形全等是解题的关键,属于中考常考题型.变式1.(2023年湖南省常德市三模数学试题)如图,在中,,,D为边上一动点(B点除外),以为一边在边上方作正方形,连接,则的面积的最大值为(
)
A. B. C. D.【答案】A【分析】如图,过点作于,过点作于,过点作于,利用三角函数的定义求得,解直角三角形求出,的长,然后证明,根据全等三角形的性质可得,设,则,继而根据三角形的面积公式可得函数关系式,根据二次函数的性质即可求得答案.【详解】解:如图,过点作于,过点作于,过点作于,
,,,,∵,∴,∴,在中,,,∴,,∵四边形是正方形,,,,,又,,,设,则,
,,的最大值为,故答案为:A.【点睛】本题考查了等腰三角形的性质,正方形的性质,全等三角形的判定与性质,解直角三角形,二次函数的应用等,综合性较强,有一定的难度,正确添加辅助线,熟练运用相关知识是解题的关键.变式2.(2022·江苏镇江·中考真题)已知,点、、、分别在正方形的边、、、上.(1)如图1,当四边形是正方形时,求证:;(2)如图2,已知,,当、的大小有_________关系时,四边形是矩形;(3)如图3,,、相交于点,,已知正方形的边长为16,长为20,当的面积取最大值时,判断四边形是怎样的四边形?证明你的结论.【答案】(1)见解析(2)(3)平行四边形,证明见解析【分析】(1)利用平行四边形的性质证得,根据角角边证明.(2)当,证得,是等腰直角三角形,∠HEF=∠EFG=90°,即可证得四边形EFGH是矩形.(3)利用正方形的性质证得为平行四边形,过点作,垂足为点,交于点,由平行线分线段成比例,设,,,则可表示出,从而把△OEH的面积用x的代数式表示出来,根据二次函数求出最大值,则可得OE=OG,OF=OH,即可证得平行四边形.【详解】(1)∵四边形为正方形,∴,∴.∵四边形为正方形,∴,,∴,∴.在和中,∵,,,∴.∴.∴;(2);证明如下:∵四边形为正方形,∴,AB=BC=AD=CD,∵AE=AH,CF=CG,AE=CF,∴AH=CG,∴,∴EH=FG.∵AE=CF,∴AB-AE=BC-CF,即BE=BF,∴是等腰直角三角形,∴∠BEF=∠BFE=45°,∵AE=AH,CF=CG,∴∠AEH=∠CFG=45°,∴∠HEF=∠EFG=90°,∴EH∥FG,∴四边形EFGH是矩形.(3)∵四边形为正方形,∴.∵,,∴四边形为平行四边形.∴.∴.过点作,垂足为点,交于点,∴.∵,设,,,则,∴.∴.∴当时,的面积最大,∴,,∴四边形是平行四边形.【点睛】此题考查了正方形的性质,矩形的判定和平行四边形的性质与判定,平行线分线段成比例定理,全等三角形的判定与性质,等腰三角形的性质,二次函数的最值,有一定的综合性,解题的关键是熟悉这些知识并灵活运用.题型七:几何最值工具--三边关系求最值动点最值问题一直是中考数学中的难题,解题的关键在于化动为静,将问题进行合理转化,利用与之相关的知识点进行分析和解答,在运用三角形三边关系解决最值问题中,解题的关键在于构造三角形,一般情况下,需要找出两条固定线段,与需要求的线段构造三角形,然后利用三角形三边关系进行分析和解答即可。例1.(23-24九年级下·江苏宿迁·阶段练习)如图,在中,已知,,点P是线段上的动点,连接,在上有一点M,始终保持,连接,则的最小值为.【答案】/【分析】本题主要考查勾股定理,斜边的中线等于斜边的一半和三角形三边之间的关系,取的中点为O,连接,先证明,进一步求出和,再根据,求出的最小值.【详解】解:如图:取的中点为O,连接∵,∴,∵,∴,∴,∵O是的中点,∴,∵,∴,∴,∴,∴的最小值为,故答案为:.变式1.(2023·江苏徐州·中考真题)如图,在中,,点在边上.将沿折叠,使点落在点处,连接,则的最小值为.
【答案】【分析】由折叠性质可知,然后根据三角不等关系可进行求解.【详解】解:∵,∴,由折叠的性质可知,∵,∴当、、B三点在同一条直线时,取最小值,最小值即为;故答案为.另解:该题也可以确点的轨迹(圆弧),在用点与圆的最值问题解决即可。【点睛】本题主要考查勾股定理、折叠的性质及三角不等关系,熟练掌握勾股定理、折叠的性质及三角不等关系是解题的关键.变式2.(2023·四川南充·校考二模)如图,的半径是5,点A是圆周上一定点,点B在上运动,且,,垂足为点C,连接,则的最小值是()A. B. C. D.【答案】D【分析】设交于,连接、、,过作于,连接,由题意易证明是等边三角形,即得出,,从而由勾股定理可求出.再根据直角三角形斜边中线的性质可知,最后利用三角形三边关系即可求解.【详解】设交于,连接、、,过作于,连接,,,,是等边三角形,,,由勾股定理得:.,.,,在中,,,的最小值是,故选:D.【点睛】本题考查等边三角形的判定和性质,勾股定理,直角三角形斜边中线的性质和三角形三边关系的应用.正确的作出辅助线是解题关键.课后训练1.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是(
)A. B. C. D.【答案】A【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值;证出△ONN′为等边三角形,△OMM′为等边三角形,得出∠N′OM′=90°,由勾股定理求出M′N′即可.【详解】解:作M关于OB的对称点M′,作N关于OA的对称点N′,如图所示:连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:,,∠N′OQ=∠M′OB=30°,∴∠NON′=60°,,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′=.故选:A.【点睛】本题考查轴对称--最短路径问题,根据轴对称定义,找到相等的线段,得到等边三角形是解题关键.2.(2022·内蒙古赤峰·统考中考真题)如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是(
)A.3 B.5 C. D.【答案】A【分析】直线AC上的动点P到E、D两定点距离之和最小属“将军饮马”模型,由D关于直线AC的对称点B,连接BE,则线段BE的长即是PD+PE的最小值.【详解】如图:连接BE,∵菱形ABCD,∴B、D关于直线AC对称,,∵直线AC上的动点P到E、D两定点距离之和最小∴根据“将军饮马”模型可知BE长度即是PD+PE的最小值.∵菱形ABCD,,点,∴,,∴∴△CDB是等边三角形∴∵点是的中点,∴,且BE⊥CD,∴故选:A.【点睛】本题考查菱形性质及动点问题,解题的关键是构造直角三角形用勾股定理求线段长.3.(2023·湖北武汉·校考模拟预测)如图,正方形ABCD的边长AB=8,E为平面内一动点,且AE=4,F为CD上一点,CF=2,连接EF,ED,则EFED的最小值为()A.6 B.4 C.4 D.6【答案】A【分析】如图(见解析),在AD边上取点H,使得,连接EH、FH,先根据正方形的性质得出,,再根据相似三角形的判定与性质得出,从而可得,然后利用三角形的三边关系定理、两点之间线段最短可得取得最小值时,点E的位置,最后利用勾股定理求解即可得.【详解】如图,在AD边上取点H,使得,连接EH、FH四边形ABCD是正方形,,,即又,即由三角形的三边关系定理得:由题意得:点E的轨迹是在以点A为圆心,AE长为半径的圆上由两点之间线段最短可知,当点E位于FH与圆A的交点时,取得最小值,最小值为,在中,由勾股定理得即的最小值为故选:A.【点睛】本题是一道较难的综合题,考查了正方形的性质、相似三角形的判定与性质、三角形的三边关系定理、两点之间线段最短等知识点,通过作辅助线,构造相似三角形是解题关键.4.(2023年江苏二模数学试卷)如图,在中,,为边上一动点(点除外),把线段绕着点沿着顺时针的方向旋转90°至,连接,则面积的最大值为(
)A.16 B.8 C.32 D.10【答案】B【分析】过点作于,作于点,由勾股定理可求,由旋转的性质可求,,由可证,可得,由三角形面积公式和二次函数的性质可求解.【详解】解:如图,过点作于,作于点,∴,∵,,,∴,∴,∴,∵将线段绕点顺时针旋转90°得到线段,∴,,∴,且,∴,在和中,,∴,∴,∵,∴∵面积,∴当时,面积的最大值为8,故选:B.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,勾股定理,二次函数的性质等知识,添加恰当辅助线构造全等三角形是本题的关键.5.(2023·江苏宿迁·沭阳县怀文中学校联考一模)如图,已知四边形中,,,点分别是边上的两个动点,且,过点B作于G,连接,则的最小值是(
)
A. B. C. D.【答案】D【分析】过点C作,交延长线于M,连接,交于O,则构造的四边形为正方形,由可证,得出,则O是正方形的中心,由正方形的性质得出,取中点N,连接,过点N作于H,由勾股定理求出,由直角三角形的中线性质得出,由三角形三边关系得,则当C、G、N三点共线时,最小,即可得出结果.【详解】解:过点C作,交延长线于M,连接,交于O,如图所示:∴,
∵,,∴,∴.∵,∴四边形为矩形.∵,∴四边形为正方形,∴.∵,∴,,∵,∴,又∵,,∴,∴,∴O是正方形的中心.∵,∴,取中点N,连接,过点N作于H,∵,∴,∴,在中,由勾股定理得:,在中,N是的中点,∴.∵,当C、G、N三点共线时,最小为:.故答案为:.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、直角三角形的性质、勾股定理、平行线的性质、三角形三边关系等知识,熟练掌握正方形的性质、直角三角形的性质是解题的关键.6.(2023·江苏盐城·校考一模)如图,在中,已知.,点P是线段上的动点,连接,在上有一点M,始终保持,连接,则的最小值为(
)
A. B. C. D.【答案】B【分析】取的中点为,连接,,先证明,进一步求出和,再根据,求出的最小值.【详解】解:如图:取的中点为,连接,,,,
,,,是的中点,,,,,,的最小值为.故选:B.【点睛】本题考查了勾股定理,直角三角形的性质,正确分析出的取值范围是解题关键.7.(2022·湖南湘西·统考中考真题)如图,在Rt△ABC中,∠A=90°,M为BC的中点,H为AB上一点,过点C作CG∥AB,交HM的延长线于点G,若AC=8,AB=6,则四边形ACGH周长的最小值是()
A.24 B.22 C.20 D.18【答案】B【分析】通过证明△BMH≌△CMG可得BH=CG,可得四边形ACGH的周长即为AB+AC+GH,进而可确定当MH⊥AB时,四边形ACGH的周长有最小值,证明四边形ACGH为矩形可得HG的长,进而可求解.【详解】∵CG∥AB,∴∠B=∠MCG,∵M是BC的中点,∴BM=CM,在△BMH和△CMG中,,∴△BMH≌△CMG(ASA),∴HM=GM,BH=CG,∵AB=6,AC=8,∴四边形ACGH的周长=AC+CG+AH+GH=AB+AC+GH=14+GH,∴当GH最小时,即MH⊥AB时四边形ACGH的周长有最小值,∵∠A=90°,MH⊥AB,∴GH∥AC,∴四边形ACGH为矩形,∴GH=8,∴四边形ACGH的周长最小值为14+8=22,故选:B.【点睛】本题主要考查全等三角形的判定与性质,确定GH的值是解题的关键.8.(2023·江苏无锡·中考真题)如图中,,为中点,若点为直线下方一点,且与相似,则下列结论:①若,与相交于,则点不一定是的重心;②若,则的最大值为;③若,则的长为;④若,则当时,取得最大值.其中正确的为(
)
A.①④ B.②③ C.①②④ D.①③④【答案】A【分析】①有3种情况,分别画出图形,得出的重心,即可求解;当,时,取得最大值,进而根据已知数据,结合勾股定理,求得的长,即可求解;③如图5,若,,根据相似三角形的性质求得,,,进而求得,即可求解;④如图6,根据相似三角形的性质得出,在中,,根据二次函数的性质,即可求取得最大值时,.【详解】①有3种情况,如图,和都是中线,点是重心;如图,四边形是平行四边形,是中点,点是重心;如图,点不是中点,所以点不是重心;①正确
②当,如图时最大,,,,,,,②错误;
③如图5,若,,∴,,,,,,,∴,,,∴,,∴,∴③错误;④如图6,,∴,即,在中,,∴,∴,当时,最大为5,∴④正确.故选:A.【点睛】本题考查了三角形重心的定义,勾股定理,相似三角形的性质,二次函数的性质,分类讨论,画出图形是解题的关键.9.(2023·江苏盐城·一模)已知,其中,,,M、N分别为、的中点,将两个三角形按图①方式摆放,点F从点A开始沿方向平移至点E与点C重合结束(如图②),在整个平移过程中,的取值范围是()A. B. C. D.【答案】D【分析】过点M、N作于点G,于点H,直线交于点K,根据勾股定理和全等三角形性质推出,判定四边形是矩形,,,得到,的最小值为1;当点A、F重合时,判定是等腰直角三角形,得到;当点C、E重合时,判定是等腰直角三角形,得到;得到最大为,即得的取值范围.【详解】分别过点M、N作于点G,于点H,直线交于点K,则,∵,,,∴,∵,∴,,,,,∴,∴四边形是矩形,∴,∵,∴,∵M是中点,∴,∴,∴,同理,,∴,当时,,最小;当点A、F重合时,∵,∴,∵,,∴;当点C、E重合时,连接、,∵,,∴,,∴,∴,∴当点A、F重合或点C、E重合时,最大,为,∴的取值范围是.故选:D.【点睛】本题主要考查了直角三角形与平移综合.熟练掌握勾股定理解直角三角形,平移性质,直角三角形斜边上中线的性质,等腰三角形性质,垂线段最短,等腰直角三角形的判定和性质,是解决问题的关键.10.(2022·江苏泰州·中考真题)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2,d3,则d1+d2+d3的最小值为(
)A. B. C. D.【答案】C【分析】连接CF、CG、AE,证可得,当A、E、F、C四点共线时,即得最小值;【详解】解:如图,连接CF、CG、AE,∵∴在和中,∵∴∴∴当时,最小,∴d1+d2+d3的最小值为,故选:C.【点睛】本题主要考查正方形的性质、三角形的全等证明,正确构造全等三角形是解本题的关键.11.(2023·江苏常州·模拟预测)如图,在菱形中,,点P是菱形内或边上的一点,且,连接,则面积的最小值为()A. B. C. D.【答案】A【分析】本题考查了菱形的性质,平行线的性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.根据菱形的性质得到,根据平行线的性质得到,得到,求得,当面积的最小时,到的距离最小,即到的距离最大,当是等腰直角三角形时,即到的距离最大,推出点边上,且,过作于,于,于是得到距离.【详解】解:过点C作过点P作,如图所示:在菱形中,,,,,,当面积的最小时,到的距离最小,即到的距离最大,当是等腰直角三角形时,即到的距离最大,,点在边上,且,过作于,于,,,到的距离,面积的最小值为,故选:A.12.(2023·辽宁盘锦·统考中考真题)如图,四边形是矩形,,,点P是边上一点(不与点A,D重合),连接.点M,N分别是的中点,连接,,,点E在边上,,则的最小值是(
)
A. B.3 C. D.【答案】C【分析】根据直线三角形斜边中线的性质可得,,通过证明四边形是平行四边形,可得,则,作点C关于直线的对称点M,则,点B,P,M三点共线时,的值最小,最小值为.【详解】解:四边形是矩形,,,点M,N分别是的中点,,,,,,,,又,四边形是平行四边形,,,如图,作点C关于直线的对称点M,连接,,则,
当点B,P,M三点共线时,的值最小,最小值为,在中,,,,的最小值,故选C.【点睛】本题考查矩形的性质,直线三角形斜边中线的性质,中位线的性质,平行四边形的判定与性质,轴对称的性质,勾股定理,线段的最值问题等,解题关键是牢固掌握上述知识点,熟练运用等量代换思想.13.(2023秋·河南南阳·九年级校联考期末)如图,在边长为的正方形中将沿射线平移,得到,连接、.求的最小值为______.【答案】【分析】将△ABC沿射线CA平移到△AB′C′的位置,连接C′E、AE、DE,证出四边形ABGE和四边形EGCD均为平行四边形,根据平行四边形的性质和平移图形的性质,可得C′E=CE,CG=DE,可得EC+GC=C′E+ED,当点C′、E、D在同一直线时,C′E+ED最小,由勾股定理求出C′D的值即为EC+GC的最小值.【详解】如图,将△ABC沿射线CA平移到△AB′C′的位置,连接C′E、AE、DE,∵AB∥GE∥DC且AB=GE=DC,∴四边形ABGE和四边形EGCD均为平行四边形,∴AE∥BG,CG=DE,∴AE⊥CC′,由作图易得,点C与点C′关于AE对称,C′E=CE,又∵CG=DE,∴EC+GC=C′E+ED,当点C′、E、D在同一直线时,C′E+ED最小,此时,在Rt△C′D′E中,C′B′=4,B′D=4+4=8,C′D=,即EC+GC的最小值为,故答案为:.【点睛】本题考查正方形的性质、图形的对称性、线段最短和平行四边形的性质与判定,解题的关键是将两条线段的和转化为同一条线段求解.14.(2023春·湖北武汉·九年级校考阶段练习)如图,点M是矩形内一点,且,,N为边上一点,连接、、,则的最小值为______.【答案】【分析】将绕点A逆时针旋转得到,连接、,然后即可得为等边三角形,同理为等边三角形,接着证明当、、三条线段在同一直线上,的值最小,即的值最小,过点作于点E,即最小值为:,问题随之得解.【详解】如图所示,将绕点A逆时针旋转得到,连接、,根据旋转的性质有:,,,为等边三角形,同理为等边三角形,,,,当线段、、三条线段在同一直线上,且该直线与垂直时,的值最小,即的值最小,如下图,过点作于点E,交于点F,最小值为:,在矩形中,于点E,即可知四边形是矩形,,即,为等边三角形,,,,,的最小值为,故答案为:.【点睛】本题主要考查了旋转的性质,矩形的性质,等边三角形的判定定理与性质,勾股定理,垂线段最短等知识,作出合理的辅助线是解答本题的关键.15.(2023上·江苏连云港·九年级校考阶段练习)已知矩形为矩形内一点,且,若点绕点逆时针旋转到点,则的最小值为.
【答案】【分析】在矩形外,以边为斜边作等腰直角三角形,,再以点O为圆心,为半径作,点P为矩形内一点,且,所以点P在的劣弧上运动,根据点绕点逆时针旋转到点,所以,,则,所以当最小时,最小,然后连接,交于P,此时,最小,则也最小,最后过点O作于E,交延长线于F,利用勾股定理求出,的长,从而求得,即可求解.【详解】解:在矩形外,以边为斜边作等腰直角三角形,,再以点O为圆心,为半径作,如图,∵点P为矩形内一点,且,∴点P在的劣弧上运动,∵点绕点逆时针旋转到点,∴,,∴∴当最小时,,连接,交于P,此时,最小,则也最小,
在中,∵,,∴,∴,过点O作于E,交延长线于F,∴,∵,,∴∵矩形∴∴∴四边形正方形,∴,∴,在中,由勾股定理,得,∴∴,故答案为:.【点睛】本题考查旋转的性质,等腰直角三角形的性质,圆满的性质,勾股定理,作出辅助圆,得出取最小值的点P位置是解题的关键.16.(2023·湖北武汉·九年级校考阶段练习)如图,在边长为6的正方形中,M为上一点,且,N为边上一动点.连接,将沿翻折得到,点P与点B对应,连接,则的最小值为.
【答案】【分析】由折叠的性质可得,点在以为圆心,以为半径的圆上,在线段上取一点,使得,利用相似三角形的性质得到,从而得到,当且仅当三点共线时,取得最小值,即可求解.【详解】解:由题意可得:∴点在以为圆心,以为半径的圆上,在线段上取一点,使得,则
∵,∴又∵∴∴∴∴如下图所示,当且仅当三点共线时,取得最小值,∴的最小值为:故答案为:【点睛】本题考查了最短路径问题,通过转化思想把转化为是解决此题的关键.17.(2023·四川广元·统考一模)如图,线段为的直径,点在的延长线上,,,点是上一动点,连接,以为斜边在的上方作Rt,且使,连接,则长的最大值为.【答案】/【分析】作,使得,,则,,,由,推出,即(定长),由点是定点,是定长,点在半径为1的上,由此即可解决问题.【详解】解:如图,作,使得,,则,,,,,,,,,即(定长),点是定点,是定长,点在半径为1的上,,的最大值为,故答案为:.【点睛】本题考查了相似三角形的判定和性质、两圆的位置关系、轨迹等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.18.(2023·湖南·统考中考真题)如图,在矩形中,,动点在矩形的边上沿运动.当点不与点重合时,将沿对折,得到,连接,则在点的运动过程中,线段的最小值为.
【答案】/【分析】根据折叠的性质得出在为圆心,为半径的弧上运动,进而分类讨论当点在上时,当点在上时,当在上时,即可求解.【详解】解:∵在矩形中,,∴,,如图所示,当点在上时,∵∴在为圆心,为半径的弧上运动,
当三点共线时,最短,此时,当点在上时,如图所示,此时当在上时,如图所示,此时综上所述,的最小值为,故答案为:.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.19.(2023·河南洛阳·统考一模)如图,在平行四边形ABCD中,,,,点E在线段BC上运动(含B、C两点).连接AE,以点A为中心,将线段AE逆时针旋转60°得到AF,连接DF,则线段DF长度的最小值为______.【答案
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外科整形中级试题及答案解析(2025版)
- 2025年青岛市胶南市留置保安员笔试真题附答案解析
- 2023年德阳市公务员录用考试《公安专业科目》真题
- 2023年阜新高等专科学校教师招聘考试笔试题库及答案
- 2025年陕西省铜川市王益区辅警考试真题附答案解析
- 2023年安阳市公务员录用考试《公安专业科目》真题
- 医美整形手术承诺书5篇
- 口腔执业助理医师-34-1-真题-无答案
- 手写卖房合同模板(3篇)
- 实物调查合同模板(3篇)
- 2025中国联通黑龙江校园招聘227人(公共基础知识)测试题附答案解析
- 2025版临床用血技术规范解读课件
- 春运驾驶员考试卷及答案
- 经销分销合同范本
- 毒性中药饮片培训
- 2026年内蒙古化工职业学院单招职业适应性考试题库带答案
- 2025年教育系统教师年度考核的个人工作总结
- 2025民航华东空管局毕业生招聘58人笔试历年参考题库附带答案详解
- 2025年四川省甘孜教师职称考试(理论知识)在线模拟题库及答案
- 2025四川绵阳市江油鸿飞投资(集团)有限公司招聘40人(公共基础知识)测试题附答案解析
- 2026年河南省职业病诊断医师资格(尘肺病类)高分突破必练试题库(含答案)
评论
0/150
提交评论