版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省佳木斯市九年级数学第一学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为S1、S2、SA.S1=C.S1+2.函数y=(k<0),当x<0时,该函数图像在A.第一象限 B.第二象限 C.第三象限 D.第四象限3.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于()A.1∶3 B.2∶3 C.∶2 D.∶34.下列一元二次方程有两个相等实数根的是()A.x2=0 B.x2=4 C.x2﹣2x﹣1=0 D.x2+1=05.一个不透明的袋子中有3个白球,4个黄球和5个红球,这些球除颜色不同外,其他完全相同.从袋子中随机摸出一个球,则它是黄球的概率是()A. B. C. D.6.判断一元二次方程是否有实数解,计算的值是()A. B. C. D.7.一个布袋里装有2个红球、3个黄球和5个白球,除颜色外其它都相同.搅匀后任意摸出一个球,是黄球的概率为()A. B. C. D.8.如图,将绕点旋转得到,设点的坐标为,则点的坐标为()A. B.C. D.9.如图,在正方形网格中,每个小正方形的边长是个单位长度,以点为位似中心,在网格中画,使与位似,且与的位似比为,则点的坐标可以为()A. B. C. D.10.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为()A.110° B.125° C.130° D.140°二、填空题(每小题3分,共24分)11.如图,在菱形ABCD中,E是BC边上的点,AE交BD于点F,若EC=2BE,则的值是.12.将抛物线向上平移1个单位后,再向左平移2个单位,得一新的抛物线,那么新的抛物线的表达式是__________________________.13.二次函数的解析式为,顶点坐标是__________.14.如图,直线轴于点,且与反比例函数()及()的图象分别交于、两点,连接、,已知的面积为4,则________.15.将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是____.16.如图,直线分别交轴,轴于点A和点B,点C是反比例函数的图象上位于直线下方的一点,CD∥轴交AB于点D,CE∥轴交AB于点E,,则的值为______17.已知二次函数y=ax2-bx+2(a≠0)图象的顶点在第二象限,且过点(1,0),则a的取值范围是_________;若a+b的值为非零整数,则b的值为_________.18.如图:M为反比例函数图象上一点,轴于A,时,______.三、解答题(共66分)19.(10分)小丹要测量灯塔市葛西河生态公园里被湖水隔开的两个凉亭和之间的距离,她在处测得凉亭在的南偏东方向,她从处出发向南偏东方向走了米到达处,测得凉亭在的东北方向.(1)求的度数;(2)求两个凉亭和之间的距离(结果保留根号).20.(6分)如图,在矩形ABCD中,AB=6,BC=13,BE=4,点F从点B出发,在折线段BA﹣AD上运动,连接EF,当EF⊥BC时停止运动,过点E作EG⊥EF,交矩形的边于点G,连接FG.设点F运动的路程为x,△EFG的面积为S.(1)当点F与点A重合时,点G恰好到达点D,此时x=,当EF⊥BC时,x=;(2)求S关于x的函数解析式,并直接写出自变量x的取值范围;(3)当S=15时,求此时x的值.21.(6分)关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)若满足,求的值.22.(8分)如图,四边形ABCD为菱形,以AD为直径作⊙O交AB于点F,连接DB交⊙O于点H,E是BC上的一点,且BE=BF,连接DE.(1)求证:DE是⊙O的切线.(2)若BF=2,BD=2,求⊙O的半径.23.(8分)如图,抛物线与直线恰好交于坐标轴上A、B两点,C为直线AB上方抛物线上一动点,过点C作CD⊥AB于D.(1)求抛物线的解析式;(2)线段CD的长度是否存在最大值?若存在,请求出线段CD长度的最大值,并写出此时点C的坐标;若不存在,请说明理由.24.(8分)如图,是的弦,于,交于,若,求的半径.25.(10分)如图,抛物线经过点A(1,0),B(4,0)与轴交于点C.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由.26.(10分)用适当的方法解方程:(1)(2).
参考答案一、选择题(每小题3分,共30分)1、D【解析】根据同底等高判断△ABD和△ACD的面积相等,即可得到S1+S2=S3+S2,即【详解】∵△ABD和△ACD同底等高,∴SS1即S△ABC和△DBC同底等高,∴S△ABC∴S故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.2、B【解析】首先根据反比例函数的比例系数确定图象的大体位置,然后根据自变量的取值范围确定具体位置【详解】∵比例系数k<0,∴其图象位于二、四象限,∵x<0∴反比例函数的图象位于第二象限,故选B.【点睛】此题考查反比例函数的性质,根据反比例函数判断象限是解题关键3、A【解析】∵DE⊥AC,EF⊥AB,FD⊥BC,∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,∴∠C=∠FDE,同理可得:∠B=∠DFE,∠A=DEF,∴△DEF∽△CAB,∴△DEF与△ABC的面积之比=,又∵△ABC为正三角形,∴∠B=∠C=∠A=60°∴△EFD是等边三角形,∴EF=DE=DF,又∵DE⊥AC,EF⊥AB,FD⊥BC,∴△AEF≌△CDE≌△BFD,∴BF=AE=CD,AF=BD=EC,在Rt△DEC中,DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,又∵DC+BD=BC=AC=DC,∴,∴△DEF与△ABC的面积之比等于:故选A.点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.4、A【分析】根据一元二次方程根的判别式以及一元二次方程的解法,逐一判断选项,即可.【详解】A.x2=0,解得:x1=x2=0,故本选项符合题意;B.x2=4,解得:x1=2,x2=-2,故本选项不符合题意;C.x2﹣2x﹣1=0,,有两个不相等的根,故不符合题意;D.x2+1=0,方程无解,故不符合题意.故选A.【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式的意义,是解题的关键.5、B【分析】利用概率公式直接计算即可.【详解】解:根据题意可得:袋子中有有3个白球,4个黄球和5个红球,共12个,从袋子中随机摸出一个球,它是黄色球的概率.故选B.【点睛】本题考查概率的计算,掌握公式正确计算是本题的解题关键.6、B【解析】首先将一元二次方程化为一般式,然后直接计算判别式即可.【详解】一元二次方程可化为:∴故答案为B.【点睛】此题主要考查一元二次方程的根的判别式的求解,熟练掌握,即可解题.7、B【分析】用黄色小球的个数除以总个数可得.【详解】解:搅匀后任意摸出一个球,是黄球的概率为故答案为B.【点睛】本题考查了概率公式,解答的关键在于确定发生事件的总发生数和所求事件发生数.8、B【分析】由题意可知,点C为线段A的中点,故可根据中点坐标公式求解.对本题而言,旋转后的纵坐标与旋转前的纵坐标互为相反数,(旋转后的横坐标+旋转前的横坐标)÷2=-1,据此求解即可.【详解】解:∵绕点旋转得到,点的坐标为,∴旋转后点A的对应点的横坐标为:,纵坐标为-b,所以旋转后点的坐标为:.故选:B.【点睛】本题考查了旋转变换后点的坐标规律探求,属于常见题型,掌握求解的方法是解题的关键.9、B【解析】利用位似性质和网格特点,延长CA到A1,使CA1=2CA,延长CB到B1,使CB1=2CB,则△A1B1C1满足条件;或延长AC到A1,使CA1=2CA,延长BC到B1,使CB1=2CB,则△A1B1C1也满足条件,然后写出点B1的坐标.【详解】解:由图可知,点B的坐标为(3,-2),
如图,以点C为位似中心,在网格中画△A1B1C1,使△A1B1C1与△ABC位似,且△A1B1C1与△ABC的位似比为2:1,
则点B1的坐标为(4,0)或(-8,0),位于题目图中网格点内的是(4,0),
故选:B.【点睛】本题考查了位似变换及坐标与图形的知识,解题的关键是根据两图形的位似比画出图形,注意有两种情况.10、B【解析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.二、填空题(每小题3分,共24分)11、【解析】EC=2BE,得,由于AD//BC,得12、y=(x+2)2-1【分析】根据函数图象的平移规律解答即可得到答案【详解】由题意得:平移后的函数解析式是,故答案为:.【点睛】此题考查抛物线的平移规律:左加右减,上加下减,正确掌握平移的规律并运用解题是关键.13、【分析】由已知和抛物线的顶点式,直接判断顶点坐标.【详解】解:∵二次函数的解析式为:,∴二次函数图象的顶点坐标为:(-1,3).故答案为:(-1,3).【点睛】本题考查了抛物线的顶点坐标与抛物线解析式的关系,抛物线的顶点式:y=a(x-h)2+k,顶点坐标为(h,k).14、1.【分析】根据反比例函数的几何意义可知:的面积为,的面积为,然后两个三角形面积作差即可求出结果.【详解】解:根据反比例函数的几何意义可知:的面积为,的面积为,∴的面积为,∴,∴.故答案为1.【点睛】本题考查反比例函数的几何意义,解题的关键是正确理解的几何意义,本题属于基础题型.15、【分析】根据题意先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线的顶点坐标为(0,0),向右平移1个单位,再向下平移2个单位后的图象的顶点坐标为(1,-2),所以得到图象的解析式为.故答案为:.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.16、【分析】过作于,过作于,由CD∥轴,CE∥轴,得利用三角形相似的性质求解建立方程求解,结合的几何意义可得答案.【详解】.解:过作于,过作于,CD∥轴,CE∥轴,直线分别交轴,轴于点A和点B,点,把代入得:同理:把代入得:,同理:故答案为;.【点睛】本题考查的是反比例函数的系数的几何意义,同时考查了一次函数的性质,勾股定理的应用,相似三角形的判定与性质,掌握以上知识是解题的关键.17、【分析】根据题意可得a<0,再由可以得到b>0,把(1,0)函数得a−b+2=0,导出b和a的关系,从而解出a的范围,再根据a+b的值为非零整数的限制条件,从而得到a,b的值.【详解】依题意知a<0,,a−b+2=0,故b>0,且b=a+2,a=b−2,a+b=a+a+2=2a+2,∴a+2>0,∴−2<a<0,∴−2<2a+2<2,∵a+b的值为非零实数,∴a+b的值为−1,1,∴2a+2=−1或2a+2=1,或,∵b=a+2,或18、﹣1.【分析】根据反比例函数系数的几何意义,由S△AOM=4,可可求出|k|=1,再由函数图像过二、四象限可知k<0,,从而可求出k的值.【详解】∵MA⊥y轴,∴S△AOM=|k|=4,∵k<0,∴k=﹣1.故答案为﹣1.【点睛】本题考查了反比例函数的几何意义,一般的,从反比例函数(k为常数,k≠0)图像上任一点P,向x轴和y轴作垂线你,以点P及点P的两个垂足和坐标原点为顶点的矩形的面积等于常数,以点P及点P的一个垂足和坐标原点为顶点的三角形的面积等于.三、解答题(共66分)19、(1)60°;(2)米.【解析】(1)根据方位角的概念得出相应角的角度,再利用平行线的性质和三角形内角和进行计算即可求得答案;(2)作CD⊥AB于点D,得到两个直角三角形,再根据三角函数的定义和特殊角的三角函数值可求得AD、BD的长,相加即可求得A、B的距离.【详解】解:(1)由题意可得:∠MAB=75°,∠MAC=30°,∠NCB=45°,AM∥CN,∴∠BAC=75°−30°=45°,∠MAC=∠NAC=30°∴∠ACB=30°+45°=75°,∴∠ABC=180°−∠BAC−∠ACB=60°;(2)如图,作CD⊥AB于点D,在Rt△ACD中,AD=CD=AC∙sin45°=300×=150,在Rt△BCD中,BD=CDtan30°=150×=50,∴AB=AD+BD=150+50,答:两个凉亭A,B之间的距离为(150+50)米.【点睛】本题考查了解直角三角形的应用,在解决有关方位角的问题时,一般根据题意理清图形中各角的关系,有时所给的方位角不在三角形中,需要通过平行线的性质或互余的角等知识转化为所需要的角,解决第二问的关键是作CD⊥AB构造含特殊角的直角三角形.20、(1)6;10;(2)S=x2+9x+12(0<x≤6);S=x2﹣21x+102(6<x≤10);(3)﹣6+2.【分析】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;(2)分两种情况:①当点F在AB上时,作GH⊥BC于H,则四边形ABHG是矩形,证明△EFB∽△GEH,得出,求出EH=x,得出AG=BH=BE+EH=4+x,由梯形面积公式和三角形面积公式即可得出答案;②当点F在AD上时,作FM⊥BC于M,则FM=AB=6,AF=BM,同①得△EFM∽△GEC,得出,求出GC=15﹣x,得出DG=CD﹣CG=x﹣9,EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,由梯形面积公式和三角形面积公式即可得出答案;(3)当x2+9x+12=15时,当x2﹣21x+102=15时,分别解方程即可.【详解】(1)当点F与点A重合时,x=AB=6;当EF⊥BC时,AF=BE=4,x=AB+AF=6+4=10;故答案为:6;10;(2)∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,CD=AB=6,AD=BC=13,分两种情况:①当点F在AB上时,如图1所示:作GH⊥BC于H,则四边形ABHG是矩形,∴GH=AB=6,AG=BH,∠GHE=∠B=90°,∴∠EGH+∠GEH=90°,∵EG⊥EF,∴∠FEB+∠GEH=90°,∴∠FEB=∠EGH,∴△EFB∽△GEH,∴,即,∴EH=x,∴AG=BH=BE+EH=4+x,∴△EFG的面积为S=梯形ABEG的面积﹣△EFB的面积﹣△AGF的面积=(4+4+x)×6﹣×4x﹣(6﹣x)(4+x)=x2+9x+12,即S=x2+9x+12(0<x≤6);②当点F在AD上时,如图2所示:作FM⊥BC于M,则FM=AB=6,AF=BM,同①得:△EFM∽△GEC,∴,即,解得:GC=15﹣x,∴DG=CD﹣CG=x﹣9,∵EC=BC﹣BE=9,AF=x﹣6,DF=AD﹣AF=19﹣x,∴△EFG的面积为S=梯形CDFE的面积﹣△CEG的面积﹣△DFG的面积=(9+19﹣x)×6﹣×9×(15﹣x)﹣(19﹣x)(x﹣9)=x2﹣21x+102即S=x2﹣21x+102(6<x≤10);(3)当x2+9x+12=15时,解得:x=﹣6±(负值舍去),∴x=﹣6+;当x2﹣21x+102=15时,解得:x=14±(不合题意舍去);∴当S=15时,此时x的值为﹣6+.【点睛】本题考查二次函数的动点问题,题目较难,解题时需注意分类讨论,避免漏解.21、(1);(2)a=-1【分析】(1)方程有两个不相等的实数根,即为方程根的判别式大于0,由此可得关于a的不等式,解不等式即可求出结果;(2)根据一元二次方程的根与系数的关系可得关于a的方程,解方程即可求出a的值,再结合(1)的结论取舍即可.【详解】解:(1)∵方程有两个不相等的实数根,∴,解得:,∴的取值范围为:;(2)∵是方程的两个根,∴,,∵,∴,∴,解得:,∵,∴.【点睛】本题考查了一元二次方程的根的判别式、根与系数的关系和一元二次方程的解法,属于常考题型,熟练掌握上述知识是解题关键.22、(1)见解析;(2).【分析】(1)证明△DAF≌△DCE,可得∠DFA=∠DEC,证出∠ADE=∠DEC=90°,即OD⊥DE,DE是⊙O的切线.
(2)在Rt△ADF和Rt△BDF中,可得AD2-(AD-BF)2=DB2-BF2,解方程可求出AD的长即可.【详解】(1)证明:如图1,连接DF,∵四边形ABCD为菱形,∴AB=BC=CD=DA,AD∥BC,∠DAB=∠C,∵BF=BE,∴AB﹣BF=BC﹣BE,即AF=CE,∴△DAF≌△DCE(SAS),∴∠DFA=∠DEC,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DEC=90°∵AD∥BC,∴∠ADE=∠DEC=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线;(2)解:如图2,∵AD是⊙O的直径,∴∠DFA=90°,∴∠DFB=90°,在Rt△ADF和Rt△BDF中,∵DF2=AD2﹣AF2,DF2=BD2﹣BF2,∴AD2﹣AF2=DB2﹣BF2,∴AD2﹣(AD﹣BF)2=DB2﹣BF2,∴∴AD=1.∴⊙O的半径为.【点睛】此题考查圆的综合,圆周角定理,菱形的性质,切线的判定,三角形全等的性质和判定,勾股定理等知识,解题关键是根据勾股定理列方程解决问题.23、(1)y=-x2+2x+3;(2)存在,CD的最大值为,C()【分析】(1)已知一次函数的解析式,分别令x、y等于0,可以求出点A、B的坐标,分别代入二次函数解析式,求出b、c,即可求出二次函数的解析式;(2)过点C作y轴的平行线交AB于点E,由△AOB是等腰直角三角形可推出△CDE也为等腰直角三角形,设出点C和点E的坐标,用含x的坐标表式线段CE的长度,再根据CD=,可以用x表示CD的长度,构造二次函数,当x=时,求二次函数的最大值即可.【详解】解:(1)在y=-x+3中,当x=0时,y=3;当y=0时,x=3,可得A(3,0),B(0,3)将A(3,0),B(0,3)代入y=-x2+bx+c,得解得抛物线的解析式为y=-x2+2x+3(2)∵在Rt△AOB中,OA=OB=3,∴∠OAB=∠ABO=45°.过点C作y轴的平行线交AB于点E.∴∠CED=∠ABO=45°,∴在Rt△CDE中,CD=设点C(x,-x2+2x+3),E(x,-x+3),0<x<3,则CE=-x2+2x+3-(-x+3)=-x2+3x=∴当时,CE有最大值,此时CD的最大值=∵当时,,∴C()【点睛】本题主要考查了二次函数解析式的求法以及用点的坐标表示线段长度,能够合理的构造二次函数是解决本题的关键.24、5.【分析】连接OB,由垂径定理得BE=CE=4,在中,根据勾股定理列方程求解.【详解】解:连接设的半径为,则在中,由勾股定理得,即解得的半径为【点睛】本题考查了圆的垂径定理,利用勾股定理列方程求解是解答此题的关键.25、(1);(2)9;(3)存在点M的坐标为()或()使△CQM为等腰三角形且△BQM为直角三角形【分析】(1)根据抛物线经过A、B两点,带入解析式,即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论