2022-2023学年吉林省长春市榆树市第二实验中学数学九年级第一学期期末达标测试试题含解析_第1页
2022-2023学年吉林省长春市榆树市第二实验中学数学九年级第一学期期末达标测试试题含解析_第2页
2022-2023学年吉林省长春市榆树市第二实验中学数学九年级第一学期期末达标测试试题含解析_第3页
2022-2023学年吉林省长春市榆树市第二实验中学数学九年级第一学期期末达标测试试题含解析_第4页
2022-2023学年吉林省长春市榆树市第二实验中学数学九年级第一学期期末达标测试试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知二次函数图象如图所示,对称轴为过点且平行于轴的直线,则下列结论中正确的是()A. B. C. D.2.如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是()A.30° B.45° C.60° D.40°3.如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为()A.0.5 B.﹣1 C.2﹣ D.4.下列叙述,错误的是()A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直平分的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线相等的四边形是矩形5.关于反比例函数图象,下列说法正确的是()A.必经过点 B.两个分支分布在第一、三象限C.两个分支关于轴成轴对称 D.两个分支关于原点成中心对称6.使分式13-x有意义的xA.x≠3 B.x=3 C.x≠0 D.x=07.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形8.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元 B.8.45×103亿元 C.8.45×104亿元 D.84.5×102亿元9.使用家用燃气灶烧开同一壶水所需的燃气量(单位:)与旋钮的旋转角度(单位:度)()近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度与燃气量的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A. B. C. D.10.宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH二、填空题(每小题3分,共24分)11.如图,把直角三角板的直角顶点放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点、.量得,,则该圆玻璃镜的半径是__________.12.已知二次函数的顶点为,且经过,将该抛物线沿轴向右平移,当它再次经过点时,所得抛物线的表达式为______.13.一个正多边形的每个外角都等于,那么这个正多边形的中心角为______.14.若m2﹣2m﹣1=0,则代数式2m2﹣4m+3的值为.15.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,1.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是_____.16.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.17.有一块三角板,为直角,,将它放置在中,如图,点、在圆上,边经过圆心,劣弧的度数等于_______18.在△ABC和△A'B'C'中,===,△ABC的周长是20cm,则△A'B'C的周长是_____.三、解答题(共66分)19.(10分)如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.20.(6分)解方程:x2-4x-7=0.21.(6分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:,,,)22.(8分)直线与轴交于点,与轴交于点,抛物线经过两点.(1)求这个二次函数的表达式;(2)若是直线上方抛物线上一点;①当的面积最大时,求点的坐标;②在①的条件下,点关于抛物线对称轴的对称点为,在直线上是否存在点,使得直线与直线的夹角是的两倍,若存在,直接写出点的坐标,若不存在,请说明理由.23.(8分)地下停车场的设计大大缓解了住宅小区停车难的问题,如图是龙泉某小区的地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小刚认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小刚和小亮谁说得对?请你判断并计算出正确的限制高度.(结果精确到0.1m,参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)24.(8分)综合与探究:三角形旋转中的数学问题.实验与操作:

Rt△ABC中,∠ABC=90°,∠ACB=30°.将Rt△ABC绕点A按顺时针方向旋转得到Rt△AB′C′(点B′,C′分别是点B,C的对应点).设旋转角为α(0°<α<180°),旋转过程中直线B′B和线段CC′相交于点D.猜想与证明:(1)如图1,当AC′经过点B时,探究下列问题:①此时,旋转角α的度数为°;②判断此时四边形AB′DC的形状,并证明你的猜想;(2)如图2,当旋转角α=90°时,求证:CD=C′D;(3)如图3,当旋转角α在0°<α<180°范围内时,连接AD,直接写出线段AD与C之间的位置关系(不必证明).25.(10分)如图,点E是矩形ABCD对角线AC上的一个动点(点E可以与点A和点C重合),连接BE.已知AB=3cm,BC=4cm.设A、E两点间的距离为xcm,BE的长度为ycm.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:说明:补全表格时相关数值保留一位小数)(2)建立平面直角坐标系,描出已补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当BE=2AE时,AE的长度约为cm.(结果保留一位小数)26.(10分)如图在Rt△ABC中,∠C=90°,BD平分∠ABC,过D作DE⊥BD交AB于点E,经过B,D,E三点作⊙O.(1)求证:AC与⊙O相切于D点;(2)若AD=15,AE=9,求⊙O的半径.

参考答案一、选择题(每小题3分,共30分)1、D【分析】由抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧即可判断a、c、b的符号,进而可判断A项;抛物线的对称轴为直线x=﹣,结合抛物线的对称轴公式即可判断B项;由图象可知;当x=1时,a+b+c<0,再结合B项的结论即可判断C项;由(1,0)与(﹣2,0)关于抛物线的对称轴对称,可知当x=-2时,y<0,进而可判断D项.【详解】解:A、∵抛物线开口向上,与y轴交于负半轴,对称轴在y轴左侧,∴a>0,c<0,<0,∴b>0,∴abc<0,所以本选项错误;B、∵抛物线的对称轴为直线x=﹣,∴,∴a﹣b=0,所以本选项错误;C、∵当x=1时,a+b+c<0,且a=b,∴,所以本选项错误;D、∵(1,0)与(﹣2,0)关于抛物线的对称轴对称,且当x=1时,y<0,∴当x=-2时,y<0,即4a﹣2b+c<0,∴,所以本选项正确.故选:D.【点睛】本题考查了二次函数的图象与性质,属于常考题型,熟练掌握抛物线的性质是解题关键.2、A【解析】根据切线的性质由AB与⊙O相切得到OB⊥AB,则∠ABO=90°,利用∠A=30°得到∠AOB=60°,再根据三角形外角性质得∠AOB=∠C+∠OBC,由于∠C=∠OBC,所以∠C=∠AOB=30°.【详解】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∵∠A=30°,∴∠AOB=60°,∵∠AOB=∠C+∠OBC,而∠C=∠OBC,∴∠C=∠AOB=30°.故选A.【点睛】此题考查了切线的性质:圆的切线垂直于经过切点的半径;以及圆周角定理:等弧所对的圆周角等于所对圆心角的一半.3、C【分析】先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.【详解】解:∵△ABC为等腰直角三角形,∴∠ACB=45°,即∠PCB+∠PCA=45°,∵∠PBC=∠PCA,∴∠PBC+∠PCB=45°,∴∠BPC=135°,∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,∴∠BOC=2∠BQC=90°,∴△OBC为等腰直角三角形,∴四边形ABOC为正方形,∴OA=BC=2,∴OB=BC=,∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),∴AP的最小值为2﹣.故选:C.【点睛】本题考查了圆周角定理及等腰直角三角形的性质.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.4、D【分析】根据菱形的判定方法,矩形的判定方法,正方形的判定方法,平行四边形的判定方法分别分析即可得出答案.【详解】解:A、根据对角线互相垂直的平行四边形可判定为菱形,再有对角线且相等可判定为正方形,此选项正确,不符合题意;B、根据菱形的判定方法可得对角线互相垂直平分的四边形是菱形正确,此选项正确,不符合题意;C、对角线互相平分的四边形是平行四边形是判断平行四边形的重要方法之一,此选项正确,不符合题意;D、根据矩形的判定方法:对角线互相平分且相等的四边形是矩形,因此只有对角线相等的四边形不能判定是矩形,此选项错误,符合题意;选:D.【点睛】此题主要考查了菱形,矩形,正方形,平行四边形的判定,关键是需要同学们准确把握矩形、菱形正方形以及平行四边形的判定定理之间的区别与联系.5、D【分析】把(2,1)代入即可判断A,根据反比例函数的性质即可判断B、C、D.【详解】A.当x=2时,y=-1≠1,故不正确;B.∵-2<0,∴两个分支分布在第二、四象限,故不正确;C.两个分支不关于轴成轴对称,关于原点成中心对称,故不正确;D.两个分支关于原点成中心对称,正确;故选D.【点睛】本题考查了反比例函数的图象与性质,反比例函数(k是常数,k≠0)的图象是双曲线,当k>0,反比例函数图象的两个分支在第一、三象限;当k<0,反比例函数图象的两个分支在第二、四象限.反比例函数图象的两个分支关于原点成中心对称.6、A【解析】直接利用分式有意义的条件进而得出答案.【详解】分式13-x有意义,则解得:x≠1.故选A.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.7、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.8、B【解析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).8450一共4位,从而8450=8.45×2.故选B.考点:科学记数法.9、C【解析】根据已知三点和近似满足函数关系y=ax2+bx+c(a≠0)可以大致画出函数图像,并判断对称轴位置在36和54之间即可选择答案.【详解】解:由图表数据描点连线,补全图像可得如图,抛物线对称轴在36和54之间,约为41℃∴旋钮的旋转角度在36°和54°之间,约为41℃时,燃气灶烧开一壶水最节省燃气.故选:C,【点睛】本题考查了二次函数的应用,二次函数的图像性质,熟练掌握二次函数图像对称性质,判断对称轴位置是解题关键.综合性较强,需要有较高的思维能力,用图象法解题是本题考查的重点.10、D【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.【详解】解:设正方形的边长为2,则CD=2,CF=1

在直角三角形DCF中,∴矩形DCGH为黄金矩形

故选:D.【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.二、填空题(每小题3分,共24分)11、1.【解析】解:∵∠MON=90°,∴为圆玻璃镜的直径,,∴半径为.故答案为:1.12、或【分析】由二次函数解析式的顶点式写出二次函数坐标为,将点P坐标代入二次函数解析式,求出a的值,如图,抛物线向右平移再次经过点P,即点P的对称点点Q与点P重合,向右移动了4个单位,写出抛物线解析式即可.【详解】由顶点坐标(0,0)可设二次函数解析式为,将P(2,2)代入解析式可得a=,所以,如图,图像上,点P的对称点为点Q(-2,2),当点Q与点P重合时,向右移动了4个单位,所以抛物线解析式为或.故答案为或.【点睛】本题主要考查二次函数顶点式求解析式、二次函数的图像和性质以及二次函数的平移,本题关键在于根据题意确定出向右平移的单位.13、60°【分析】根据题意首先由多边形外角和定理求出正多边形的边数n,再由正多边形的中心角=,即可得出结果.【详解】解:正多边形的边数为,故这个正多边形的中心角为.故答案为:60°.【点睛】本题考查正多边形的性质和多边形外角和定理以及正多边形的中心角的计算方法,熟练掌握正多边形的性质,并根据题意求出正多边形的边数是解决问题的关键.14、1【解析】试题分析:先求出m2﹣2m的值,然后把所求代数式整理出已知条件的形式并代入进行计算即可得解.解:由m2﹣2m﹣1=0得m2﹣2m=1,所以,2m2﹣4m+3=2(m2﹣2m)+3=2×1+3=1.故答案为1.考点:代数式求值.15、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号相同的情况,再利用概率公式即可求得答案.【详解】根据题意,画树状图如下:共有9种等可能结果,其中两次摸出的小球标号相同的有1种结果,所以两次摸出的小球标号相同的概率是,故答案为.【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.

错因分析中等难度题.失分的原因有两个:(1)没有掌握放回型和不放回型概率计算的区别;(2)未找全标号相同的可能结果.

16、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.17、1°【分析】因为半径相等,根据等边对等角结合三角形内角和定理即可求得,继而求得答案.【详解】如图,连接OA,∵OA,OB为半径,∴,∴,∴劣弧的度数等于,故答案为:1.【点睛】本题考查了圆心角、弧、弦之间的关系以及圆周角定理,是基础知识要熟练掌握.18、30cm.【分析】利用相似三角形的性质解决问题即可.【详解】,的周长:的周长=2:3的周长为20cm,的周长为30cm,故答案为:30cm.【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定及性质是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)证明见解析;【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为⊙O的切线,只要证明∠ODE=90°即可.【详解】(1)连接AD;∵AB是⊙O的直径,∴∠ADB=90°.又∵DC=BD,∴AD是BC的中垂线.∴AB=AC.(2)连接OD;∵OA=OB,CD=BD,∴OD∥AC.∴∠ODE=∠CED.又∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切线.考点:切线的判定20、【解析】x²-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)²-4×1×(-7)=44>0,∴x=,∴.21、(1);(2)51m【分析】(1)作于M,根据矩形的性质得到,,根据正切的定义求出AM;(2)根据正切的定义求出DM,结合图形计算,得到答案.【详解】解:(1)作于M,则四边形ABCM为矩形,,,在中,,则,答:AB与CD之间的距离;(2)在中,,则,,答:建筑物CD的高度约为51m.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.22、(1);(2)①;存在,或【分析】(1)先求得点的坐标,再代入求得b、c的值,即可得二次函数的表达式;(2)作交于点,,,,根据二次函数性质可求得.(3)求出,再根据直线与直线的夹角是的两倍,得出线段的关系,用两点间距离公式求出坐标.【详解】解:如图(1),;(2)作交于点.①设,,则:则时,最大,;(2),则,设,①若:则,∴;②若则,,作于,,与重合,关于对称,∴【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式,三角形面积的巧妙求法,以及对称点之间的关系.23、小亮说的对,CE为2.6m.【解析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【详解】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=BDBA∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5≈2.7(m),在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=CECD∴CE=sin∠CDE×CD=sin72°×2.7≈2.6(m),∵2.6m<2.7m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点睛】本题主要考查了解直角三角形的应用,主要是正弦、正切概念及运算,解决本题的关键把实际问题转化为数学问题.24、(1)①60;②四边形AB′DC是平行四边形,证明见解析.(2)证明见解析;(3)【分析】(1)①根据矩形的性质、旋转的性质、等边三角形的判定方法解题;②根据两组对边分别平行的四边形是平行四边形解题;(2)过点作的垂线,交于点E,由旋转的性质得到对应边、对应角相等,进而证明△CDB≌△,即可解题;(3)先证明,再由相似三角形的性质解题,进而证明即可证明.【详解】解:(1)①60;②四边形AB′DC是平行四边形.证明:∵∠ABC=90°,∠ACB=30°,∴∠CAB=90°-30°=60°.∵Rt△AB′C′是由Rt△ABC绕点A顺时针旋转得到的,∴∠C′AB′=∠CAB=60°,,.与都是等边三角形.∴∠ACC′=∠AB′B=60°.∵∠CAB′=∠CAB+∠C′AB′=120°,∴∠ACC′+∠CAB′=180°,∠CAB′+∠ABB′=180°.∴AB′//CD,AC//B′D.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论