河北省秦皇岛抚宁区台营学区2024年中考数学最后冲刺模拟试卷含解析_第1页
河北省秦皇岛抚宁区台营学区2024年中考数学最后冲刺模拟试卷含解析_第2页
河北省秦皇岛抚宁区台营学区2024年中考数学最后冲刺模拟试卷含解析_第3页
河北省秦皇岛抚宁区台营学区2024年中考数学最后冲刺模拟试卷含解析_第4页
河北省秦皇岛抚宁区台营学区2024年中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省秦皇岛抚宁区台营学区2024年中考数学最后冲刺模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为22.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()A. B. C. D.3.一个多边形的边数由原来的3增加到n时(n>3,且n为正整数),它的外角和()A.增加(n﹣2)×180° B.减小(n﹣2)×180°C.增加(n﹣1)×180° D.没有改变4.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.AAS D.ASA5.的整数部分是()A.3 B.5 C.9 D.66.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A. B. C. D.7.数据4,8,4,6,3的众数和平均数分别是()A.5,4 B.8,5 C.6,5 D.4,58.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9.下列图形中,线段MN的长度表示点M到直线l的距离的是()A. B. C. D.10.已知a﹣b=1,则a3﹣a2b+b2﹣2ab的值为()A.﹣2 B.﹣1 C.1 D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为_____.12.如图,在直角坐标平面xOy中,点A坐标为,,,AB与x轴交于点C,那么AC:BC的值为______.13.在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正确的有_________.(填序号)14.如图,△ABC与△DEF位似,点O为位似中心,若AC=3DF,则OE:EB=_____.15.如图,在Rt△ABC中,AC=4,BC=3,将Rt△ABC以点A为中心,逆时针旋转60°得到△ADE,则线段BE的长度为_____.16.若圆锥的地面半径为,侧面积为,则圆锥的母线是__________.三、解答题(共8题,共72分)17.(8分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.(1)求这条抛物线的表达式;(2)求∠ACB的度数;(3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.18.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)19.(8分)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.判断直线CD和⊙O的位置关系,并说明理由.过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.20.(8分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.21.(8分)问题探究(1)如图1,△ABC和△DEC均为等腰直角三角形,且∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,连接AD、BE,求的值;(2)如图2,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=4,过点A作AM⊥AB,点P是射线AM上一动点,连接CP,做CQ⊥CP交线段AB于点Q,连接PQ,求PQ的最小值;(3)李师傅准备加工一个四边形零件,如图3,这个零件的示意图为四边形ABCD,要求BC=4cm,∠BAD=135°,∠ADC=90°,AD=CD,请你帮李师傅求出这个零件的对角线BD的最大值.图322.(10分)如图,网格的每个小正方形边长均为1,每个小正方形的顶点称为格点.已知和的顶点都在格点上,线段的中点为.(1)以点为旋转中心,分别画出把顺时针旋转,后的,;(2)利用(1)变换后所形成的图案,解答下列问题:①直接写出四边形,四边形的形状;②直接写出的值;③设的三边,,,请证明勾股定理.23.(12分)解不等式组,并把解集在数轴上表示出来.24.(10分)如图,AB是⊙O的直径,OD⊥弦BC于点F,交⊙O于点E,连结CE、AE、CD,若∠AEC=∠ODC.(1)求证:直线CD为⊙O的切线;(2)若AB=5,BC=4,求线段CD的长.

参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】

根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.2、D【解析】

两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面积,利用几何概率的计算方法解答即可.【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)==.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.3、D【解析】

根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.4、B【解析】

由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.【详解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',故选:B.【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.5、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.6、C【解析】连接CD,交MN于E,∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,∴MN⊥CD,且CE=DE.∴CD=2CE.∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.∴.∵在△CMN中,∠C=90°,MC=6,NC=,∴∴.∴.故选C.7、D【解析】

根据众数的定义找出出现次数最多的数,再根据平均数的计算公式求出平均数即可【详解】∵4出现了2次,出现的次数最多,∴众数是4;这组数据的平均数是:(4+8+4+6+3)÷5=5;故选D.8、D【解析】试题分析:根据轴对称图形和中心对称图形的概念,可知:A既不是轴对称图形,也不是中心对称图形,故不正确;B不是轴对称图形,但是中心对称图形,故不正确;C是轴对称图形,但不是中心对称图形,故不正确;D即是轴对称图形,也是中心对称图形,故正确.故选D.考点:轴对称图形和中心对称图形识别9、A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.10、C【解析】

先将前两项提公因式,然后把a﹣b=1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a3﹣a2b+b2﹣2ab=a2(a﹣b)+b2﹣2ab=a2+b2﹣2ab=(a﹣b)2=1.故选C.【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解析】

联立不含m、n的方程求出x与y的值,代入求出m、n的值,即可求出所求式子的值.【详解】联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:1-y=1,解得:y=0,则,将x=2、y=0代入,得:,解得:,则mn=1,故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.12、【解析】

过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.先证△ADO∽△OEB,再根据∠OAB=30°求出三角形的相似比,得到OD:OE=2∶,根据平行线分线段成比例得到AC:BC=OD:OE=2∶=【详解】解:如图所示:过点A作AD⊥y轴,垂足为D,作BE⊥y轴,垂足为E.∵∠OAB=30°,∠ADE=90°,∠DEB=90°∴∠DOA+∠BOE=90°,∠OBE+∠BOE=90°∴∠DOA=∠OBE∴△ADO∽△OEB∵∠OAB=30°,∠AOB=90°,∴OA∶OB=∵点A坐标为(3,2)∴AD=3,OD=2∵△ADO∽△OEB∴∴OE∵OC∥AD∥BE根据平行线分线段成比例得:AC:BC=OD:OE=2∶=故答案为.【点睛】本题考查三角形相似的证明以及平行线分线段成比例.13、①②④【解析】

由当▱ABCD的面积最大时,AB⊥BC,可判定▱ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.【详解】∵当▱ABCD的面积最大时,AB⊥BC,∴▱ABCD是矩形,

∴∠A=∠C=90°,AC=BD,故③错误,④正确;∴∠A+∠C=180°;故②正确;∴AC=AB故答案为:①②④.【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD是矩形是解此题的关键.14、1:2【解析】

△ABC与△DEF是位似三角形,则DF∥AC,EF∥BC,先证明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,据此可得答案.【详解】解:∵△ABC与△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,则OE:EB=1:2故答案为:1:2【点睛】本题考查了位似的相关知识,位似是相似的特殊形式,位似比等于相似比,位似图形的对应顶点的连线平行或共线.15、【解析】

连接CE,作EF⊥BC于F,根据旋转变换的性质得到∠CAE=60°,AC=AE,根据等边三角形的性质得到CE=AC=4,∠ACE=60°,根据直角三角形的性质、勾股定理计算即可.【详解】解:连接CE,作EF⊥BC于F,

由旋转变换的性质可知,∠CAE=60°,AC=AE,

∴△ACE是等边三角形,

∴CE=AC=4,∠ACE=60°,

∴∠ECF=30°,

∴EF=CE=2,

由勾股定理得,CF==,

∴BF=BC-CF=,

由勾股定理得,BE==,

故答案为:.【点睛】本题考查的是旋转变换的性质、等边三角形的判定和性质,掌握旋转变换对应点到旋转中心的距离相等、对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.16、13【解析】试题解析:圆锥的侧面积=×底面半径×母线长,把相应数值代入即可求解.设母线长为R,则:解得:故答案为13.三、解答题(共8题,共72分)17、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).【解析】

(1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;(2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;(3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.【详解】(1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;(2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE•BC=OC•AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如图2,设H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).综上所述:D点坐标为(1,2)或(4,﹣25).【点睛】本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.18、热气球离地面的高度约为1米.【解析】

作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.【详解】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD=,∴=,解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.19、解:(1)直线CD和⊙O的位置关系是相切,理由见解析(2)BE=1.【解析】试题分析:(1)连接OD,可知由直径所对的圆周角是直角可得∠DAB+∠DBA=90°,再由∠CDA=∠CBD可得∠CDA+∠ADO=90°,从而得∠CDO=90°,根据切线的判定即可得出;(2)由已知利用勾股定理可求得DC的长,根据切线长定理有DE=EB,根据勾股定理得出方程,求出方程的解即可.试题解析:(1)直线CD和⊙O的位置关系是相切,理由是:连接OD,∵AB是⊙O的直径,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∵∠CDA=∠CBD,∴∠DAB+∠CDA=90°,∵OD=OA,∴∠DAB=∠ADO,∴∠CDA+∠ADO=90°,即OD⊥CE,∴直线CD是⊙O的切线,即直线CD和⊙O的位置关系是相切;(2)∵AC=2,⊙O的半径是3,∴OC=2+3=5,OD=3,在Rt△CDO中,由勾股定理得:CD=4,∵CE切⊙O于D,EB切⊙O于B,∴DE=EB,∠CBE=90°,设DE=EB=x,在Rt△CBE中,由勾股定理得:CE2=BE2+BC2,则(4+x)2=x2+(5+3)2,解得:x=1,即BE=1.考点:1、切线的判定与性质;2、切线长定理;3、勾股定理;4、圆周角定理20、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=﹣80x+60(0≤x≤);(3)机场大巴与货车相遇地到机场C的路程为km.【解析】

(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程.【详解】解:(1)60+20=80(km),(h)∴连接A.

B两市公路的路程为80km,货车由B市到达A市所需时间为h.(2)设所求函数表达式为y=kx+b(k≠0),将点(0,60)、代入y=kx+b,得:解得:∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为(3)设线段ED对应的函数表达式为y=mx+n(m≠0)将点代入y=mx+n,得:解得:∴线段ED对应的函数表达式为解方程组得∴机场大巴与货车相遇地到机场C的路程为km.【点睛】本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.21、(1);(2);(3)+.【解析】

(1)由等腰直角三角形的性质可得BC=3,CE=,∠ACB=∠DCE=45°,可证△ACD∽△BCE,可得=;(2)由题意可证点A,点Q,点C,点P四点共圆,可得∠QAC=∠QPC,可证△ABC∽△PQC,可得,可得当QC⊥AB时,PQ的值最小,即可求PQ的最小值;(3)作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,由题意可证△ABC∽△DEC,可得,且∠BCE=∠ACD,可证△BCE∽△ACD,可得∠BEC=∠ADC=90°,由勾股定理可求CE,DF,BF的长,由三角形三边关系可求BD的最大值.【详解】(1)∵∠BAC=∠CDE=90°,AB=AC=3,DE=CD=1,∴BC=3,CE=,∠ACB=∠DCE=45°,∴∠BCE=∠ACD,∵==,=,∴=,∠BCE=∠ACD,∴△ACD∽△BCE,∴=;(2)∵∠ACB=90°,∠B=30°,BC=4,∴AC=,AB=2AC=,∵∠QAP=∠QCP=90°,∴点A,点Q,点C,点P四点共圆,∴∠QAC=∠QPC,且∠ACB=∠QCP=90°,∴△ABC∽△PQC,∴,∴PQ=×QC=QC,∴当QC的长度最小时,PQ的长度最小,即当QC⊥AB时,PQ的值最小,此时QC=2,PQ的最小值为;(3)如图,作∠DCE=∠ACB,交射线DA于点E,取CE中点F,连接AC,BE,DF,BF,,∵∠ADC=90°,AD=CD,∴∠CAD=45°,∠BAC=∠BAD-∠CAD=90°,∴△ABC∽△DEC,∴,∵∠DCE=∠ACB,∴∠BCE=∠ACD,∴△BCE∽△ACD,∴∠BEC=∠ADC=90°,∴CE=BC=2,∵点F是EC中点,∴DF=EF=CE=,∴BF==,∴BD≤DF+BF=+【点睛】本题是相似综合题,考查了等腰直角三角形的性质,勾股定理,相似三角形的判定和性质等知识,添加恰当辅助线构造相似三角形是本题的关键.22、(1)见解析;(2)①正方形;②;③见解析.【解析】

(1)根据旋转作图的方法进行作图即可;(2)①根据旋转的性质可证AC=BC1=B1C2=B2C3,从而证出四边形CC1C2C3是菱形,再根据有一个角是直角的菱形是正方形即可作出判断,同理可判断四边形ABB1B2是正方形;②根据相似图形的面积之比等相似比的平方即可得到结果;③

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论