2022年广东省梅州市五华县数学九年级第一学期期末复习检测模拟试题含解析_第1页
2022年广东省梅州市五华县数学九年级第一学期期末复习检测模拟试题含解析_第2页
2022年广东省梅州市五华县数学九年级第一学期期末复习检测模拟试题含解析_第3页
2022年广东省梅州市五华县数学九年级第一学期期末复习检测模拟试题含解析_第4页
2022年广东省梅州市五华县数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:x…﹣3﹣1﹣101134…y…1150﹣3﹣4﹣305…给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.32.的半径为5,圆心O到直线l的距离为3,则直线l与的位置关系是A.相交 B.相切 C.相离 D.无法确定3.下图中,最能清楚地显示每组数据在总数中所占百分比的统计图是()A. B.C. D.4.如图,在Rt△ABC中,∠ACB=900,CD⊥AB于点D,BC=3,AC=4,tan∠BCD的值为()A.; B.; C.; D.;5.如图,为了测量路灯离地面的高度,身高的小明站在距离路灯的底部(点)的点处,测得自己的影子的长为,则路灯的高度是()A. B. C. D.6.如图,我国传统文化中的“福禄寿喜”图由四个图案构成,这四个图案中是中心对称图形的是()A. B. C. D.7.下列是电视台的台标,属于中心对称图形的是()A. B. C. D.8.已知函数y=ax2+bx+c(a≠1)的图象如图,给出下列4个结论:①abc>1;②b2>4ac;③4a+2b+c>1;④2a+b=1.其中正确的有()个.A.1 B.2 C.3 D.49.如图,△ABC内接于⊙O,AB=BC,∠ABC=120°,⊙O的直径AD=6,则BD的长为()A.2 B.3 C.2 D.310.如图,点A,B在反比例函数的图象上,点C,D在反比例函数的图象上,AC//BD//y轴,已知点A,B的横坐标分别为1,2,△OAC与△ABD的面积之和为,则k的值为(

)A.4 B.3 C.2 D.11.如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是()图(1)图(2)A. B.当是等边三角形时,秒C.当时,秒 D.当的面积为时,的值是或秒12.某个几何体的三视图如图所示,该几何体是()A. B. C. D.二、填空题(每题4分,共24分)13.关于的方程的一个根为2,则______.14.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a+c;③4a+2b+c<0;④2a+b+c>0;⑤>0;⑥2a+b=0;其中正确的结论的有_______.15.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A处,则小明的影子AM长为米.16.如图,已知菱形ABCD中,∠B=60°,点E在边BC上,∠BAE=25°,把线段AE绕点A逆时针方向旋转,使点E落在边CD上,那么旋转角的度数为______.17.太原市某学校门口的栏杆如图所示,栏杆从水平位置绕定点旋转到位置,已知栏杆的长为的长为点到的距离为.支柱的高为,则栏杆端离地面的距离为__________.18.如图,在△ABC中,∠B=45°,AB=4,BC=6,则△ABC的面积是__________.三、解答题(共78分)19.(8分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为的条件下生长最快的新品种.下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(°C)随时间x(小时)变化的函数图象,其中段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度的时间有________小时;(2)当时,大棚内的温度约为多少度?20.(8分)某商店以每件40元的价格进了一批商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时销售此商品每月的利润可达到4000元.21.(8分)先阅读,再填空解题:(1)方程:的根是:________,________,则________,________.(2)方程的根是:________,________,则________,________.(3)方程的根是:________,________,则________,________.(4)如果关于的一元二次方程(且、、为常数)的两根为,,根据以上(1)(2)(3)你能否猜出:,与系数、、有什么关系?请写出来你的猜想并说明理由.22.(10分)三个小球上分别标有数字﹣2,﹣1,3,它们除数字外其余全部相同,现将它们放在一个不透明的袋子里,从袋子中随机地摸出一球,将球上的数字记录,记为m,然后放回;再随机地摸取一球,将球上的数字记录,记为n,这样确定了点(m,n).(1)请列表或画出树状图,并根据列表或树状图写出点(m,n)所有可能的结果;(2)求点(m,n)在函数y=x的图象上的概率.23.(10分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.24.(10分)如图,直线y=﹣x+m与抛物线y=ax2+bx都经过点A(6,0),点B,过B作BH垂直x轴于H,OA=3OH.直线OC与抛物线AB段交于点C.(1)求抛物线的解析式;(2)当点C的纵坐标是时,求直线OC与直线AB的交点D的坐标;(3)在(2)的条件下将△OBH沿BA方向平移到△MPN,顶点P始终在线段AB上,求△MPN与△OAC公共部分面积的最大值.25.(12分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.26.如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.(1)求反比例函数的解析式;(2)过点作轴的平行线,点在直线上运动,点在轴上运动.①若是以为直角顶点的等腰直角三角形,求的面积;②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)

参考答案一、选择题(每题4分,共48分)1、B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣<x<1时,y<0,符合题意;(3)﹣1<x1<0,3<x1<4时,x1离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.2、A【分析】根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.故选A.【点睛】本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.3、A【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【详解】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图.

故选:A.【点睛】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.4、A【分析】根据余角的性质,可得∠BCD=∠A,根据等角的正切相等,可得答案.【详解】由∠ACB=90°,CD⊥AB于D,得

∠BCD=∠A

tan∠BCD=tan∠A=,

故选A.【点睛】此题考查锐角三角函数的定义,利用余角的性质得出∠BCD=∠A是解题关键.5、B【分析】根据平行得:△ABM∽△ODM,列比例式,代入可求得结论.【详解】解:由题意得:AB∥OC,∴△ABM∽△OCM,∴∵OA=12,AM=4,AB=1.6,

∴OM=OA+AM=12+4=16,∴∴OC=6.4,

则则路灯距离地面6.4米.故选:B.【点睛】本题考查相似三角形的判定和性质,解题关键是利用物高和影长成正比或相似三角形的对应边成比例性质解决此题.6、B【解析】根据中心对称图形的概念逐一判断即可.【详解】A.不是中心对称图形,故该选项不符合题意,B.是中心对称图形,符合题意,C.不是中心对称图形,故该选项不符合题意,D.不是中心对称图形,故该选项不符合题意,故选:B.【点睛】本题考查中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【解析】根据中心对称图形的概念即可求解.【详解】A、不是中心对称图形,故此选项错误;

B、不是中心对称图形,故此选项错误;

C、是中心对称图形,故此选项正确;

D、不是中心对称图形,故此选项错误.

故选:C.【点睛】本题考查了中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.8、C【分析】二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点来确定,结合抛物线与x轴交点的个数来分析解答.【详解】解:①由抛物线的对称轴可知:>1,∴ab<1,由抛物线与y轴的交点可知:c>1,∴abc<1,故①错误;②由图象可知:△>1,∴b2−4ac>1,即b2>4ac,故②正确;③∵(1,c)关于直线x=1的对称点为(2,c),而x=1时,y=c>1,∴x=2时,y=c>1,∴y=4a+2b+c>1,故③正确;④∵,∴b=−2a,∴2a+b=1,故④正确.故选C.【点睛】本题考查了二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中等题型.9、D【分析】连接OB,如图,利用弧、弦和圆心角的关系得到,则利用垂径定理得到OB⊥AC,所以∠ABO=∠ABC=60°,则∠OAB=60°,再根据圆周角定理得到∠ABD=90°,然后利用含30度的直角三角形三边的关系计算BD的长.【详解】连接OB,如图:

∵AB=BC,

∴,

∴OB⊥AC,

∴OB平分∠ABC,

∴∠ABO=∠ABC=×120°=60°,

∵OA=OB,

∴∠OAB=60°,

∵AD为直径,

∴∠ABD=90°,

在Rt△ABD中,AB=AD=3,

∴BD=.故选D.【点睛】考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理和圆周角定理.10、B【分析】首先根据A,B两点的横坐标,求出A,B两点的坐标,进而根据AC//BD//y轴,及反比例函数图像上的点的坐标特点得出C,D两点的坐标,从而得出AC,BD的长,根据三角形的面积公式表示出S△OAC,S△ABD的面积,再根据△OAC与△ABD的面积之和为,列出方程,求解得出答案.【详解】把x=1代入得:y=1,∴A(1,1),把x=2代入得:y=,∴B(2,),∵AC//BD//y轴,∴C(1,k),D(2,)∴AC=k-1,BD=-,∴S△OAC=(k-1)×1,S△ABD=(-)×1,又∵△OAC与△ABD的面积之和为,∴(k-1)×1+(-)×1=,解得:k=3;故答案为B.【点睛】:此题考查了反比例函数系数k的几何意义,以及反比例函数图象上点的坐标特征,熟练掌握反比例函数k的几何意义是解本题的关键.11、D【分析】先根据图象信息求出AB、BE、BE、AE、ED,A、直接求出比,B、先判断出∠EBC≠60°,从而得出点P可能在ED上时,△PBQ是等边三角形,但必须是AD的中点,而AE>ED,所以点P不可能到AD中点的位置,故△PBQ不可能是等边三角形;C、利用相似三角形性质列出方程解决,分两种情况讨论计算即可,D、分点P在BE上和点P在CD上两种情况计算即可.【详解】由图象可知,AD=BC=BE=5,CD=AB=4,AE=3,DE=2,A、∴AB:AD=5:4,故A错误,B、∵tan∠ABE=,∴∠ABE≠30°∴∠PBQ≠60°,∴点P在ED时,有可能△PBQ是等边三角形,∵BE=BC,∴点P到点E时,点Q到点C,∴点P在线段AD中点时,有可能△PBQ是等边三角形,∵AE>DE,∴点P不可能到AD的中点,∴△PBQ不可能是等边三角形,故B错误,C、∵△ABE∽△QBP,∴点E只有在CD上,且满足,∴,∴CP=.∴t=(BE+ED+DQ)÷1=5+2+(4−)=.故C错误,D、①如图(1)在Rt△ABE中,AB=4,BE=5sin∠AEB=,∴sin∠CBE=∵BP=t,∴PG=BPsin∠CBE=t,∴S△BPQ=BQ×PG=×t×t=t2=4,∴t=−(舍)或t=,②当点P在CD上时,S△BPQ=×BC×PC=×5×(5+2+4−t)=×(11−t)=4,∴t=,∴当△BPQ的面积为4cm2时,t的值是或秒,故D正确,故选:D.【点睛】此题是二次函数综合题,主要考查动点问题的函数图象、矩形的性质、三角形的面积公式等知识.解题的关键是读懂图象信息求出相应的线段,学会转化的思想,把问题转化为方程的思想解决,属于中考常考题型..12、D【解析】根据几何体的三视图判断即可.【详解】由三视图可知:该几何体为圆锥.故选D.【点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.二、填空题(每题4分,共24分)13、1【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.14、①④⑤⑥【分析】①由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对①作判断;②令x=-1,则y=a-b+c,根据图像可得:a-b+c<1,进而可对②作判断;③根据对称性可得:当x=2时,y>1,可对③对作判断;④根据2a+b=1和c>1可对④作判断;⑤根据图像与x轴有两个交点可对⑤作判断;⑥根据对称轴为:x=1可得:a=-b,进而可对⑥判作断.【详解】解:①∵该抛物线开口方向向下,∴a<1.∵抛物线对称轴在y轴右侧,∴a、b异号,∴b>1;∵抛物线与y轴交于正半轴,∴c>1,∴abc<1;故①正确;②∵令x=-1,则y=a-b+c<1,∴a+c<b,故②错误;③根据抛物线的对称性知,当x=2时,y>1,即4a+2b+c>1;故③错误;④∵对称轴方程x=-=1,∴b=-2a,∴2a+b=1,∵c>1,∴2a+b+c>1,故④正确;⑤∵抛物线与x轴有两个交点,∴ax2+bx+c=1由两个不相等的实数根,∴>1,故⑤正确.⑥由④可知:2a+b=1,故⑥正确.综上所述,其中正确的结论的有:①④⑤⑥.故答案为:①④⑤⑥.【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用.15、1.【解析】根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知,即,解得AM=1.∴小明的影长为1米.16、60°或70°.【分析】连接AC,根据菱形的性质及等边三角形的判定易证△ABC是等边三角形.分两种情况:①将△ABE绕点A逆时针旋转60°,点E可落在边DC上,此时△ABE与△ABE1重合;②将线段AE绕点A逆时针旋转70°,点E可落在边DC上,点E与点E2重合,此△AEC≌△AE2C.【详解】连接AC.∵菱形ABCD中,∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠ACB=60°,∴∠ACD=60°.本题有两种情况:①如图,将△ABE绕点A逆时针旋转,使点B与点C重合,点E与点E1重合,此时△ABE≌△ABE1,AE=AE1,旋转角α=∠BAC=60°;②∵∠BAC=60°,∠BAE=25°,∴∠EAC=35°.如图,将线段AE绕点A逆时针旋转70°,使点E到点E2的位置,此时△AEC≌△AE2C,AE=AE2,旋转角α=∠EAE2=70°.综上可知,符合条件的旋转角α的度数为60度或70度.17、【分析】作DF⊥ABCG⊥AB,根据题意得△ODF∽△OCB,,得出DF,D端离地面的距离为DF+OE,即可求出.【详解】解:如图作DF⊥AB垂足为F,CG⊥AB垂足为G;∴∠DFO=∠CGO=90°∵∠DOA=∠COB∴△DFO∽△CGO则∵CG=0.3mOD=OA=3mOC=OB=3.5-3=0.5m∴DF=1.8m则D端离地面的距离=DF+OE=1.8+0.5=2.3m【点睛】此题主要考查了相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.18、6【分析】作辅助线AD⊥BC构造直角三角形ABD,利用锐角∠B的正弦函数的定义求出三角形ABC底边BC上的高AD的长度,然后根据三角形的面积公式来求△ABC的面积即可.【详解】过A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB•sinB=4•sin45°=4×=,∴S△ABC=BC•AD=×6×=,故答案为:【点睛】本题考查了解直角三角形.解答该题时,通过作辅助线△ABC底边BC上的高线AD构造直角三角形,利用锐角三角函数的定义在直角三角形中求得AD的长度的.三、解答题(共78分)19、(1)8;(2).【分析】找出临界点即可.【详解】(1)8;∵点在双曲线上,

∴,

∴解得:.

当时,,

所以当时,大棚内的温度约为.【点睛】理解临界点的含义是解题的关键.20、(1)20%;(2)60元【分析】(1)设该商品平均每月的价格增长率为m,根据该商品的原价及经过两次涨价后的价格,即可得出关于m的一元二次方程,解之取其正值即可得出结论;(2)根据总利润=单价利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240(不合题意,舍去).答:x为60元时商品每天的利润可达到4000元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21、(1)-2,1,-1,2;(2)3,,,;(3)5,-1,4,-5;(4),,理由见解析【分析】(1)利用十字相乘法求出方程的解,即可得到答案;(2)利用十字相乘法求出方程的解,即可得到答案;(3)利用十字相乘法求出方程的解,即可得到答案;(4)利用公式法求出方程的解,即可得到答案.【详解】(1)∵,∴(x+2)(x-1)=0,∴,,∴,;故答案为:-2,1,-1,2;(2)∵,∴(x-3)(2x-1)=0,∴,,∴,,故答案为:3,,,;(3)∵,∴(x-5)(x+1)=0,∴,,∴,,故答案为:5,-1,4,-5;(4),与系数、、的关系是:,,理由是有两根为,,∴,.【点睛】此题考查解一元二次方程,一元二次方程根与系数的关系,根据方程的特点选择适合的解法是解题的关键.22、(1)见解析;(2)【分析】(1)根据题意列表,然后写出点(m,n)所有可能的结果即可;(2)点(m,n)所有可能的结果共有9种,符合n=m的有3种,由概率公式即可得出答案.【详解】解:(1)列表如下:点(m,n)所有可能的结果为:(﹣2,﹣2),(﹣1,﹣2),(3,﹣2),(﹣2,﹣1),(﹣1,﹣1),(3,﹣1),(﹣2,3),(﹣1,3)(3,3);(2)点(m,n)所有可能的结果共有9种,符合n=m的有3种:(﹣2,﹣2),(﹣1,﹣1),(3,3),∴点(m,n)在函数y=x的图象上的概率为:.【点睛】本题考查了列表法与树状图法、概率公式以及一次函数的性质等知识;列表得出所有结果是解题的关键.23、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:(1)(名)故答案为:1.(1)由表格可知:10名学生的射击成绩的众数是2环;这10名学生的射击成绩的中位数应是从小到大排列后,第5名和第6名成绩的平均数,∴这10名学生的射击成绩的中位数为(2+2)÷1=2环.故答案为:2;2.(3)9环(含9环)的人数占总人数的1÷10×3%=10%∴优秀射手的人数为:500×10%=3(名)故答案为:3.【点睛】此题考查的是众数、中位数和数据统计问题,掌握众数和中位数的定义和百分率的求法是解决此题的关键.24、(1)y=-x2+3x;(2)(4,2);(3)【分析】(1)先求出直线AB的解析式,求出点B坐标,再将A,B的坐标代入y=ax2+bx即可;(2)求出直线AC的解析式,再联立直线OC与直线AB的解析式即可;(3)设PM与OC、PA分别交于G、H,PN与OC、OA分别交于K、F,分别求出直线OB,PM,OC的解析式,再分别用含a的代数式表示出H,G,E,F的坐标,最后分情况讨论,可求出△MPN与△OAC公共部分面积的最大值.【详解】解:(1)∵直线y=﹣x+m点A(6,0),∴﹣6+m=0,∴m=6,∴yAB=﹣x+6,∵OA=3OH,∴OH=2,在yAB=﹣x+6中,当x=2时,y=4,∴B(2,4),将A(6,0),B(2,4)代入y=ax2+bx,得,,解得,a=﹣,b=3,∴抛物线的解析式为y=-x2+3x;(2)∵直线OC与抛物线AB段交于点C,且点C的纵坐标是,∴=﹣x2+3x,解得,x1=1(舍去),x2=5,∴C(5,),设yOC=kx,将C(5,)代入,得,k=,∴yOC=x,联立,解得,x=4,y=2,∴点D的坐标为(4,2);(3)设直线OB的解析式为yOB=mx,点P坐标为(a,﹣a+6),将点B(2,4)代入,得,m=2,∴yOB=2x,由平移知,PM∥OB,∴设直线PM的解析式为yPM=2x+n,将P(a,﹣a+6)代入,得,﹣a+6=2a+n,∴n=6﹣3a,∴yPM=2x+6﹣3a,设PM与OC、PA分别交于G、H,PN与OC、OA分别交于K、F,联立,解得,x=2a﹣4,y=a﹣2,∴G(2a﹣4,a﹣2),yG=a﹣2,在yPM=2x+6﹣3a中,当y=0时,x=,∴E(,0),OE=,∵点P的横坐标为a,∴K(a,a),F(a,0),∴OF=a,KF=a,设△MPN与△OAC公共部分面积为S,①当0≤a<4时,S=S△OFK﹣S△OEG,=×a×a﹣()(a﹣2),=﹣a2+3a﹣3=﹣(a﹣3)2+,∵﹣<0,根据二次函数的图象及性质可知,∴当a=3时S有最大值;②当4≤a≤6时,S=S△PEF=EF•PF=(a﹣a+3)(﹣a+6)==,∵,根据二次函数的图象及性质知,当a=4时,S有最大值1;∵∴△MPN与△OAC公共部分面积的最大值为.【点睛】本题考查了待定系数法求函数解析式,一次函数交点问题,图形平移,二次函数综合最值,解决本题的关键是正确理解题意,熟练运用待定系数法求函数解析式,熟练掌握函数交点问题的解法步骤,要与方程相结合,对于求图形面积最值问题转化为二次函数最值问题,万熟练掌握二次函数的性质.25、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;

(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论