




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届广西贵港市港北区第四初级中学九上数学期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.在同一坐标系中,一次函数与二次函数的图象可能是().A. B. C. D.2.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是()A.∠B=∠D B.∠C=∠E C. D.3.某制药厂,为了惠顾于民,对一种药品由原来的每盒121元,经连续两次下调价格后,每盒降为81元;问平均每次下调的百分率是多少?设平均每次下调的百分率为x,则根据题可列的方程为()A.x= B.x=C. D.4.如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35°,则∠D的度数是()A.145° B.125° C.90° D.80°5.下列关于x的方程中,一定是一元二次方程的为()A.ax2+bx+c=0 B.x2﹣2=(x+3)2C.x2+﹣5=0 D.x2=06.以下事件属于随机事件的是()A.小明买体育彩票中了一等奖B.2019年是中华人民共和国建国70周年C.正方体共有四个面D.2比1大7.正方形的边长为4,若边长增加x,那么面积增加y,则y关于x的函数表达式为()A. B. C. D.8.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米9.如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A. B. C. D.10.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是(
)A.2 B.1 C.32-二、填空题(每小题3分,共24分)11.如图,△ABC中,∠ACB=90°,∠A=30°,BC=1,CD是△ABC的中线,E是AC上一动点,将△AED沿ED折叠,点A落在点F处,EF线段CD交于点G,若△CEG是直角三角形,则CE=____.12.将二次函数化成的形式为__________.13.如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是_____.14.若△ABC∽△A′B′C′,且=,△ABC的周长为12cm,则△A′B′C′的周长为_______cm.15.在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送110份小礼品,则参加聚会的有______名同学.16.如图,为的直径,则_______________________.17.点P(3,﹣4)关于原点对称的点的坐标是_____.18.如图,的半径为,的面积为,点为弦上一动点,当长为整数时,点有__________个.三、解答题(共66分)19.(10分)现有A,B,C,D四张不透明的卡片,除正面上的图案不同外,其他均相同.将这4张卡片背面向上洗匀后放在桌面上.(Ⅰ)从中随机取出1张卡片,卡片上的图案是中心对称图形的概率是_____;(Ⅱ)若从中随机抽取一张卡片,不放回,再从剩下的3张中随机抽取1张卡片,请用画树形图或列表的方法,求两次抽取的卡片都是轴对称图形的概率.20.(6分)如图,一枚运载火箭从地面处发射,当火箭到达点时,从位于地面处的雷达站测得的距离是6,仰角为;1后火箭到达点,此时测得仰角为(所有结果取小数点后两位).(1)求地面雷达站到发射处的水平距离;(2)求这枚火箭从到的平均速度是多少?(参考数据:,,,,,)21.(6分)如图,已知二次函数的图象与轴交于、两点(点在点的左侧),与轴交于点,且,顶点为.(1)求二次函数的解析式;(2)点为线段上的一个动点,过点作轴的垂线,垂足为,若,四边形的面积为,求关于的函数解析式,并写出的取值范围;(3)探索:线段上是否存在点,使为等腰三角形?如果存在,求出点的坐标;如果不存在,请说呀理由.22.(8分)如图,点A,C,D,B在以O点为圆心,OA长为半径的圆弧上,AC=CD=DB,AB交OC于点E.求证:AE=CD.23.(8分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.24.(8分)如图,在中,,是斜边上的中线,以为直径的分别交、于点、,过点作,垂足为.(1)若的半径为,,求的长;(2)求证:与相切.25.(10分)在中,是边上的中线,点在射线上,过点作交的延长线于点.(1)如图1,点在边上,与交于点证明:;(2)如图2,点在的延长线上,与交于点.①求的值;②若,求的值26.(10分)AB是⊙O的直径,C点在⊙O上,F是AC的中点,OF的延长线交⊙O于点D,点E在AB的延长线上,∠A=∠BCE.(1)求证:CE是⊙O的切线;(2)若BC=BE,判定四边形OBCD的形状,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:A.由直线与y轴的交点在y轴的负半轴上可知,<0,错误;B.由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m>0,错误;C.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D.由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.考点:1.二次函数的图象;2.一次函数的图象.2、D【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.3、D【分析】设平均每次下调的百分率为x,根据该药品的原价及经过两次下调后的价格,即可得出关于x的一元二次方程,此题得解.【详解】解:设平均每次下调的百分率为x,依题意,得:121(1﹣x)2=1.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.4、B【解析】试题解析:连接∵EC与相切,故选B.点睛:圆内接四边形的对角互补.5、D【解析】根据一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是1.逐一判断即可.【详解】解:A、当a=0时,ax1+bx+c=0,不是一元二次方程;B、x1﹣1=(x+3)1整理得,6x+11=0,不是一元二次方程;C、,不是整式方程,不是一元二次方程;D、x1=0,是一元二次方程;故选:D.【点睛】本题主要考查一元二次方程的定义,正确把握一元二次方程的定义是解题关键.6、A【分析】随机事件是指在一定条件下,可能发生也可能不发生的事件,依据随机事件定义可以作出判断.【详解】A、小明买体育彩票中了一等奖是随机事件,故本选项正确;B、2019年是中华人民共和国建国70周年是确定性事件,故本选项错误;C、正方体共有四个面是不可能事件,故本选项错误;D、2比1大是确定性事件,故本选项错误;故选:A.【点睛】此题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7、C【分析】加的面积=新正方形的面积-原正方形的面积,把相关数值代入化简即可.【详解】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【点睛】本题考查列二次函数关系式;得到增加的面积的等量关系是解决本题的关键.8、A【分析】如图(见解析),作于H,在中,由可以求出AH的长,再在中,由即可求出AE的长.【详解】如图,作于H在中,则在中,则故选:A.【点睛】本题考查了锐角三角函数,熟记常见角度的三角函数值是解题关键.9、D【解析】A选项,在△OAB∽△OCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在△OAB∽△OCD中,∠A和∠C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.10、B【分析】设AT交⊙O于点D,连结BD,根据圆周角定理可得∠ADB=90°,再由切线性质结合已知条件得△BDT和△ABD都为等腰直角三角形,由S阴=S△BDT计算即可得出答案.【详解】设AT交⊙O于点D,连结BD,如图:∵AB是⊙O的直径,∴∠ADB=90°,又∵∠ATB=45°,BT是⊙O切线,∴△BDT和△ABD都为等腰直角三角形,∵AB=2,∴AD=BD=TD=22AB=2∴弓形AD的面积等于弓形BD的面积,∴S阴=S△BDT=12×2×2故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积.二、填空题(每小题3分,共24分)11、或【分析】分两种情形:如图1中,当时.如图2中,当时,分别求解即可.【详解】解:在中,,,,,,,∴,∴.若△CEG是直角三角形,有两种情况:I.如图1中,当时.∴,作于.则,在中,,,.II.如图2中,当时,∵,∴,∴,∴,此时点与点重合,∴,∴,∴,综上所述,的长为或.故答案为:或.【点睛】本题考查了翻折变换,直角三角形性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.12、【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.13、【解析】试题解析:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,).在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0)把A、B的坐标代入得:,解得:,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0);故答案为(,0).14、16cm【解析】∵△ABC∽△A′B′C′,,∴C△ABC:C△A′B′C′=3:4,又∵C△ABC=12cm,∴C△A′B′C′=16cm.故答案为16.15、1【解析】设参加聚会的有x名学生,根据“在国庆节的一次同学聚会上,每人都向其他人赠送了一份小礼品,共互送10份小礼品”,列出关于x的一元二次方程,解之即可.【详解】解:设参加聚会的有x名学生,根据题意得:,解得:,舍去,即参加聚会的有1名同学,故答案为:1.【点睛】本题考查了一元二次方程的应用,正确找出等量关系,列出一元二次方程是解题的关键.16、60°【分析】连接AC,根据圆周角定理求出∠A的度数,根据直径所对的圆周角是直角得到∠ACB=90°,根据三角形内角和定理计算即可.【详解】解:连接AC,
由圆周角定理得,∠A=∠CDB=30°,
∵AB为⊙O的直径,
∴∠ACB=90°,
∴∠CBA=90°-∠A=60°,
故答案为:60°.【点睛】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直角是解题的关键.17、(﹣3,4).【分析】根据关于关于原点对称的点,横坐标与纵坐标都互为相反数.填空即可.【详解】解:点P(3,﹣4)关于原点对称的点的坐标是(﹣3,4),故答案为(﹣3,4).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18、4【分析】从的半径为,的面积为,可得∠AOB=90°,故OP的最小值为OP⊥AB时,为3,最大值为P与A或B点重合时,为6,故,当长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.【详解】∵的半径为,的面积为∴∠AOB=90°又OA=OB=6∴AB=当OP⊥AB时,OP有最小值,此时OP=AB=当P与A或B点重合时,OP有最大值,为6,故当OP长为整数时,OP可以为5或6,根据圆的对称性,这样的P点共有4个.故答案为:4【点睛】本题考查的是圆的对称性及最大值、最小值问题,根据“垂线段最短”确定OP的取值范围是关键.三、解答题(共66分)19、(Ⅰ);(Ⅱ)【分析】(Ⅰ)根据题意,直接利用概率公式求解可得;(Ⅱ)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:(Ⅰ)从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为,故答案为:;(Ⅱ)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果,则两次所抽取的卡片恰好都是轴对称图形的概率为=.【点睛】本题考查列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.20、(1)雷达站到发射处的水平距离为4.38;(2)这枚火箭从到的平均速度为0.39.【分析】(1)根据余弦三角函数的定义,即可求解;(2)先求出AL的值,再求出BL的值,进而即可求解.【详解】(1)在中,,答:雷达站到发射处的水平距离为4.38;(2)在中,,在中,,∴,∴速度为0.39,答:这枚火箭从到的平均速度为0.39.【点睛】本题主要考查解直角三角形的实际应用,掌握三角函数的定义,是解题的关键.21、(1);(2);(3)存在,,.【解析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.
(2)可将四边形ACPQ分成直角三角形AOC和直角梯形CQPC两部分来求解.先根据抛物线的解析式求出A点的坐标,即可得出三角形AOC直角边OA的长,据此可根据上面得出的四边形的面积计算方法求出S与m的函数关系式.
(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,据此可设出N点的坐标,然后用坐标系中两点间的距离公式分别表示出CM、MN、CN的长,然后分三种情况进行讨论:①CM=MN;②CM=CN;③MN=CN.根据上述三种情况即可得出符合条件的N点的坐标.【详解】解:(1)∵,∴,.∴,解得,∴二次函数的解析式为;(2),设直线的解析式为,则有解得∴直线的解析式为∵轴,,∴点的坐标为;(3)线段上存在点,使为等腰三角形.设点坐标为则:,,①当时,解得,(舍去)此时②当时,,解得,(舍去),此时③当时,解得,此时.【点睛】本题考查了二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的能力.考查学生分类讨论、数形结合的数学思想方法.22、证明见解析【解析】试题分析:连接OC,OD,根据弦相等,得出它们所对的弧相等,得到=,再得到它们所对的圆心角相等,证明得到又因为即可证明.试题解析:证明:方法一:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,,,,,,,.方法二:连接OC,OD,∵AC=CD=DB,=,∴,∴,∵,∴,∵∠CAO=∠CAE+∠EAO,∠AEC=∠AOC+∠EAO,∴∠CAO=∠AEC,在中,∴∠ACO=∠CAO,∴∠ACO=∠AEC,,,.方法三:连接AD,OC,OD,∵AC=DB,=,∴∠ADC=∠DAB,∴CD∥AB,∴∠AEC=∠DCO,∵AC=CD,AO=DO,∴CO⊥AD,∴∠ACO=∠DCO,∴∠ACO=∠AEC,∴AC=AE,∵AC=CD,∴AE=CD.23、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,∴=,由旋转的性质得:∠BAD=∠CAE,∴△ABD∽△ACE,∴==;(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,如图3所示:则四边形DMCN是矩形,∴DM=CN,DN=MC,∵∠BAC=∠ADC=θ,且tanθ=,∴=,=,∴=,∴AE=AD=×3=,DE=AE=,∴CE=CD﹣DE=6﹣=,∴AC===∴BC=AC=,∵△ACD的面积=AC×DM=CD×AE,∴CN=DM==,∴BN=BC+CN=,AM===,∴DN=MC=AM+AC=,∴BD===.【点睛】本题是四边形综合题目,考查了相似三角形的判定与性质、旋转的性质、平行线分线段成比例定理、矩形的判定与性质、勾股定理、三角函数定义、三角形面积等知识;熟练掌握相似三角形的判定与性质和勾股定理是解题的关键.24、(1);(2)见解析.【分析】(1)根据直角三角形斜边的中线等于斜边的一半,可求得的长度,再根据勾股定理,可求得的长度.根据圆的直径对应的圆周角为直角,可知,根据等腰三角形的顶角平分线、底边上的中线、底边上的高重合,可求得的长.(2)根据三角形中位线平行于底边,可知,再根据,可知,则可知与相切.【详解】(1)连接、,,.为的斜边的中线,由于直角三角形斜边的中线等于斜边的一半,,,,为圆的直径.,即,由于等腰三角形的顶角平分线、底边上的中线、底边上的高重合,.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025小鸭苗买卖服务合同
- 智能手机在传染病防控中的应用指南
- 骨科亮点护理实践体系
- 青年医学教师授课比赛实施要点
- 人教版小学一年级语文上册第八单元测试题
- 造口疝气规范化护理要点
- 二手房交易方式之委托交易
- 学校下学期质量管理工作总结模版
- 2024年09月26日更新【Attest】2024年美国媒体使用报告
- 服装合作协议书
- 2025年5G网络在无人机领域的应用可行性研究报告
- 2025四川爱众集团第一批次招聘10人笔试参考题库附带答案详解
- 工业用地开发项目成本分析与资金筹措方案
- 2025年初中地理学业水平考试模拟试卷:地图与地球知识综合训练试题卷及答案
- (人教2024版)英语七年级下册Unit7.4 Section B 1a-2d课件(新教材)
- 2025年广东嘉城建设集团有限公司及其下属公司招聘笔试参考题库含答案解析
- 2025年湖北荆州市监利市畅惠交通投资有限公司招聘笔试参考题库含答案解析
- 酒店入股合同协议书
- 银行sql考试题及答案
- 隔离技术知识试题及答案
- 2025三方贸易协议合同范本 贸易合同范本
评论
0/150
提交评论