江苏省苏州市胥江实验中学2025届九年级数学第一学期期末达标检测模拟试题含解析_第1页
江苏省苏州市胥江实验中学2025届九年级数学第一学期期末达标检测模拟试题含解析_第2页
江苏省苏州市胥江实验中学2025届九年级数学第一学期期末达标检测模拟试题含解析_第3页
江苏省苏州市胥江实验中学2025届九年级数学第一学期期末达标检测模拟试题含解析_第4页
江苏省苏州市胥江实验中学2025届九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省苏州市胥江实验中学2025届九年级数学第一学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.下列事件是必然事件的是()A.某人体温是100℃ B.太阳从西边下山C.a2+b2=﹣1 D.购买一张彩票,中奖2.二次三项式配方的结果是()A. B.C. D.3.下列方程中,没有实数根的方程是()A.(x-1)2=2C.3x24.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.B.C.D.5.已知一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a等于()A. B. C. D.6.已知二次函数y=x2﹣2x+m(m为常数)的图象与x轴的一个点为(3,0),则关于x的一元二次方程x2﹣2x+m=0的两个实数根是()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=﹣1,x2=1 D.x1=3,x2=﹣57.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)8.已知抛物线在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A. B. C. D.9.下列几何图形不是中心对称图形的是()A.平行四边形 B.正五边形 C.正方形 D.正六边形10.已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A.2 B.4 C.6 D.811.下列方程中,是一元二次方程的是()A. B.C. D.12.如图,在由边长为1的小正方形组成的网格中,点,,,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.二次函数y=ax2+bx+c(a、b、c为常数且a≠0)中的x与y的部分对应值如下表:x-2-1012345y50-3-4-30512给出了结论:(1)二次函数y=ax2+bx+c有最小值,最小值为-3;(2)当-<x<2时,y<0;(3)二次函数y=ax2+bx+c的图象与x轴有两个交点,且它们分别在y轴两侧.则其中正确结论是_________(填上正确的序号)14.已知关于x的一元二次方程(a-1)x2-x+a2-1=0的一个根是0,那么a的值为.15.如图将矩形绕点顺时针旋转得矩形,若,,则图中阴影部分的面积为__________.16.在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为____________.17.在一块边长为30cm的正方形飞镖游戏板上,有一个半径为10cm的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.18.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则sin(α+β)=_____________.三、解答题(共78分)19.(8分)如图,灯塔在港口的北偏东方向上,且与港口的距离为80海里,一艘船上午9时从港口出发向正东方向航行,上午11时到达处,看到灯塔在它的正北方向.试求这艘船航行的速度.(结果保留根号)20.(8分)如图1,正方形的边在正方形的边上,连接.(1)和的数量关系是____________,和的位置关系是____________;(2)把正方形绕点旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形的边长为4,正方形的边长为,正方形绕点旋转过程中,若三点共线,直接写出的长.21.(8分)将矩形ABCD按如图所示的方式折叠,BE,EG,FG为折痕,若顶点A,C,D都落在点O处,且点B,O,G在同一条直线上,同时点E,O,F在另一条直线上,若AD=4,则四边形BEGF的面积为_____.22.(10分)如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.已知:AB,CD.(1)求作此残片所在的圆(不写作法,保留作图痕迹)(2)求(1)中所作圆的半径23.(10分)如图,抛物线y=ax2+5ax+c(a<0)与x轴负半轴交于A、B两点(点A在点B的左侧),与y轴交于C点,D是抛物线的顶点,过D作DH⊥x轴于点H,延长DH交AC于点E,且S△ABD:S△ACB=9:16,(1)求A、B两点的坐标;(2)若△DBH与△BEH相似,试求抛物线的解析式.24.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.25.(12分)如图,已知反比例函数的图像与一次函数的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出时的x的取值范围(只写答案)26.如图,在Rt△ABC中,∠C=90°,=,BC=2,求AB的长.

参考答案一、选择题(每题4分,共48分)1、B【解析】根据必然事件的特点:一定会发生的特点进行判断即可【详解】解:A、某人体温是100℃是不可能事件,本选项不符合题意;B、太阳从西边下山是必然事件,本选项符合题意;C、a2+b2=﹣1是不可能事件,本选项不符合题意;D、购买一张彩票,中奖是随机事件,本选项不符合题意.故选:B.【点睛】本题考查了必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.3、D【解析】先把方程化为一般式,再分别计算各方程的判别式的值,然后根据判别式的意义判断方程根的情况.【详解】解:A、方程化为一般形式为:x2-2x-1=0,△=(−2)2−4×1×(−1)=8>0,方程有两个不相等的实数根,所以B、方程化为一般形式为:2x2-x-3=0,△=(−1)2−4×2×(−3)=25>0,方程有两个不相等的实数根,所以C、△=(−2)2−4×3×(−1)=16>0,方程有两个不相等的实数根,所以C选项错误;D、△=22−4×1×4=−12<0,方程没有实数根,所以D选项正确.故选:D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.4、D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:.故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.5、A【详解】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.根据题意得:,解得:a=1,经检验,a=1是原分式方程的解,故本题选A.6、A【分析】利用抛物线的对称性确定抛物线与x轴的另一个点为(﹣1,0),然后利用抛物线与x轴的交点问题求解.【详解】解:∵抛物线的对称轴为直线x=﹣=1,而抛物线与x轴的一个点为(1,0),∴抛物线与x轴的另一个点为(﹣1,0),∴关于x的一元二次方程x2﹣2x+m=0的两个实数根是x1=﹣1,x2=1.故选:A.【点睛】本题考查了抛物线与轴的交点:把求二次函数,,是常数,与轴的交点坐标问题转化为解关于的一元二次方程.也考查了二次函数的性质.7、A【解析】试题分析:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选A.考点:1.位似变换;2.坐标与图形性质.8、D【解析】试题分析:由抛物线开口向上可知a>0,故A错误;由对称轴在轴右侧,可知a、b异号,所以b<0,故B错误;由图象知当x=1时,函数值y小于0,即a+b+c<0,故C错误;由图象知当x=-2时,函数值y大于0,即4a-2b+c>0,故D正确;故选D考点:二次函数中和符号9、B【分析】根据中心对称图形的定义如果一个图形绕着一个点旋转180°后能够与原图形完全重合即是中心对称图形,这个点叫做对称点.【详解】解:根据中心对称图形的定义来判断:A.平行四边形绕着对角线的交点旋转180°后与原图形完全重合,所以平行四边形是中心对称图形;B.正五边形无论绕着那个点旋转180°后与原图形都不能完全重合,所以正五边形不是中心对称图形;C.正方形绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形;D.正六边形是绕着对角线的交点旋转180°后与原图形完全重合,所以正方形是中心对称图形.故选:B【点睛】本题考查了中心对称图形的判断方法.中心对称图形是一个图形,它绕着图形中的一点旋转180°后与原来的图形完全重合.10、D【分析】根据圆锥侧面展开图的圆心角与半径(即圆锥的母线的长度)求得的弧长,就是圆锥的底面的周长,然后根据圆的周长公式l=2πr解出r的值即可.【详解】试题解析:设圆锥的底面半径为r圆锥的侧面展开扇形的半径为12,∵它的侧面展开图的圆心角是∴弧长即圆锥底面的周长是解得,r=4,∴底面圆的直径为1.故选:D.【点睛】本题考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.11、B【解析】根据一元二次方程的定义进行判断即可.【详解】A.属于多项式,错误;B.属于一元二次方程,正确;C.未知数项的最高次数是2,但不属于整式方程,错误;D.属于整式方程,未知数项的最高次数是3,错误.故答案为:B.【点睛】本题考查了一元二次方程的性质以及定义,掌握一元二次方程的定义是解题的关键.12、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为∠BAD=45°,∴扇形的面积==故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.二、填空题(每题4分,共24分)13、(2)(3)【分析】根据表格数据求出二次函数的对称轴为直线x=1,然后根据二次函数的性质对各小题分析判断即可得解.【详解】由表格数据可知,二次函数的对称轴为直线x=1,所以,当x=1时,二次函数y=ax2+bx+c有最小值,最小值为−4;故(1)小题错误;根据表格数据,当−1<x<3时,y<0,所以,−<x<2时,y<0正确,故(2)小题正确;二次函数y=ax2+bx+c的图象与x轴有两个交点,分别为(−1,0)(3,0),它们分别在y轴两侧,故(3)小题正确;综上所述,结论正确的是(2)(3)共2个.故答案为:(2)(3).【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.14、-1【解析】试题分析:把代入方程,即可得到关于a的方程,再结合二次项系数不能为0,即可得到结果.由题意得,解得,则考点:本题考查的是一元二次方程的根即方程的解的定义点评:解答本题的关键是熟练掌握一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.同时注意一元二次方程的二次项系数不能为0.15、【分析】连接BD,BF,根据S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE即可得出答案.【详解】如图,连接BD,BF,在矩形ABCD中,∠A=90°,AB=3,AD=BC=2,∴BD=,S矩形ABCD=AB×BC=3×2=6∵矩形BEFG是由矩形ABCD绕点B顺时针旋转90°得到的∴BF=BD=,∠DBF=90°,∠CBE=90°,S矩形BEFG=S矩形ABCD=6则S阴影=S△ABD+S扇形BDF+S△BEF-S矩形ABCD-S扇形BCE=S矩形ABCD+S扇形BDF+S矩形BEFG-S矩形ABCD-S扇形BCE==故答案为:.【点睛】本题考查了与扇形有关的面积计算,熟练掌握扇形面积公式,将图形进行分割是解题的关键.16、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【详解】∵摸到红球的概率为,且袋中只有1个红球,∴袋中共有4个球,∴白球个数=4-1=3.故答案为:3.【点睛】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.17、【分析】分别计算半径为10cm的圆的面积和边长为30cm的正方形ABCD的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm的圆的面积=π•102=100πcm2,

边长为30cm的正方形ABCD的面积=302=900cm2,

∴P(飞镖落在圆内)=,故答案为:.【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.18、【分析】连接DE,利用等腰三角形的性质及三角形内角和定理可得出∠α=30°,同理可得出:∠CDE=∠CED=30°=∠α,由∠AEC=60°结合∠AED=∠AEC+∠CED可得出∠AED=90°,设等边三角形的边长为a,则AE=2a,DE=a,利用勾股定理可得出AD的长,由三角函数定义即可得出答案.【详解】解:连接DE,如图所示:

在△ABC中,∠ABC=120°,BA=BC,

∴∠α=30°,

同理得:∠CDE=∠CED=30°=∠α.

又∵∠AEC=60°,

∴∠AED=∠AEC+∠CED=90°.

设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,

∴AD=a,

∴sin(α+β)==.

故答案为:.【点睛】此题考查解直角三角形、等边三角形的性质以及图形的变化规律,构造出含一个锐角等于∠α+∠β的直角三角形是解题的关键.三、解答题(共78分)19、海里/时【分析】利用直角三角形性质边角关系,BO=AO×cos30°求出BO,然后除以船从O到B所用时间即可.【详解】解:由题意知:∠AOB=30°,在Rt△AOB中,OB=OA×cos∠AOB=80×=40(海里),航行速度为:(海里/时).【点睛】本题考查锐角三角函数的运用,熟练掌握直角三角形的边角关系是关键.20、(1);(2)成立,见解析;(3)和【分析】(1)由题意通过证明,得到,再通过等量代换,得到;(2)由题意利用全等三角形的判定证明,得到,再通过等量代换进而得到;(3)根据题意分E在线段AC上以及E在线段AC的延长线上两种情况进行分类讨论.【详解】解:(1)∵四边形和四边形都是正方形,∴BC=CD,EC=CG,∴(SAS),∴;又∵;∴∴;(2)如图:成立,证明:,∴,∴,又∵,∴,即(3)①如图,E在线段AC上,∵∴OE=EC-OC==,OB==2,由勾股定理可知DG=BE=;②如图,E在线段AC的延长线上,∵∴,∴∴在中∵∴.故答案为:和.【点睛】本题考查正方形的性质以及全等三角形,熟练掌握正方形的性质以及全等三角形的判定与性质是解题的关键.21、【分析】设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,由勾股定理得出,解得a=,证明△EDG∽△GCF,得出比例线段,求出CF.则可求出EF.由四边形面积公式可求出答案.【详解】解:由折叠可得,AE=OE=DE,CG=OG=DG,∴E,G分别为AD,CD的中点,设DG=CG=a,则AB=2a=OB,DG=OG=CG=a,BG=3a,BC=AD=4,∵∠C=90°,∴Rt△BCG中,,∴,∴a=,∴DG=CG=,∴BG=OB+OG=2=3,由折叠可得∠EGD=∠EGO,∠OGF=∠FGC,∴∠EGF=90°,∴∠EGD+∠FGC=90°,∵∠EGD+∠DEG=90°,∴∠FGC=∠DEG,∵∠EDG=∠GCF=90°,∴△EDG∽△GCF,∴,∴.∴CF=1,∴FO=1,∴EF=3,由折叠可得,∴∠BOE=∠A=90°,∵点B,O,G在同一条直线上,点E,O,F在另一条直线上,∴EF⊥BG,∴S四边形EBFG=×BG×EF=×3=.故答案为:.【点睛】本题考查了矩形折叠的性质,相似三角形的判定与性质,直角三角形的性质,勾股定理等知识,熟练掌握折叠的性质是解题的关键22、(1)图见解析;(2)1.【分析】(1)由垂径定理知,垂直于弦的直径是弦的中垂线,故作AC,BC的中垂线交于点O,则点O是弧ACB所在圆的圆心;(2)在Rt△OAD中,由勾股定理可求得半径OA的长.【详解】解:(1)作弦AC的垂直平分线与弦AB的垂直平分线交于O点,以O为圆心OA长为半径作圆O就是此残片所在的圆,如图.(2)连接OA,设OA=x,AD=12cm,OD=(x-8)cm,则根据勾股定理列方程:x2=122+(x-8)2,解得:x=1.答:圆的半径为1cm.23、(1);(2)见解析.【分析】(1)根据顶点公式求出D坐标(利用a,b,c表示),得到OC,DH(利用a,b,c表示)值,因为S△ABD:S△ACB=9:16,所以得到DH:OC=9:16,得到c=4a,利用交点式得出A,B即可.(2)由题意可以得到,求出DH,EH(利用a表示),因为△DBH与△BEH相似,得到,即可求出a(注意舍弃正值),得到解析式.【详解】解:(1)∴∵C(0,c)∴OC=-c,DH=∵S△ABD:S△ACB=9∶16∴∴∴∴(2)①∵EH∥OC∴△AEH∽△ACO∴∴∴∵∵△DBH与△BEH相似∴∠BDH=∠EBH,又∵∠BHD=∠BHE=90°∴△DBH∽△BEH∴∴∴(舍去正值)∴【点睛】此题主要考查了二次函数与相似三角形等知识,熟练运用待定系数法、相似三角形是解题的关键.24、(1);(2)的值不变化,值为,理由见解析;(3)【分析】(1)由平行线分线段成比例定理即可得出答案;(2)证明△ABD∽△ACE,得出==(3)作AE⊥CD于E,DM⊥AC于M,DN⊥BC于N,则DM=CN,DN=MC,由三角函数定义得出=,=,得出=,求出AE=AD=,DE=AE=,得出CE=CD﹣DE=,由勾股定理得出AC==,得出BC=AC=,由面积法求出CN=DM=,得出BN=BC+CN=,由勾股定理得出AM==,得出DN=MC=AM+AC=,再由勾股定理即可得出答案.【详解】(1)∵DE∥BC,∴===;故答案为:;(2)的值不变化,值为;理由如下:由(1)得:DE∥B,∴△ADE∽△ABC,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论