2022年浙江省杭州市萧山区五校联考数学九年级第一学期期末复习检测模拟试题含解析_第1页
2022年浙江省杭州市萧山区五校联考数学九年级第一学期期末复习检测模拟试题含解析_第2页
2022年浙江省杭州市萧山区五校联考数学九年级第一学期期末复习检测模拟试题含解析_第3页
2022年浙江省杭州市萧山区五校联考数学九年级第一学期期末复习检测模拟试题含解析_第4页
2022年浙江省杭州市萧山区五校联考数学九年级第一学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.抛物线y=﹣3(x﹣1)2+3的顶点坐标是()A.(﹣1,﹣3) B.(﹣1,3) C.(1,﹣3) D.(1,3)2.已知△ABC∽△DEF,∠A=85°;∠F=50°,那么cosB的值是()A.1 B. C. D.3.若反比例函数的图象过点(-2,1),则这个函数的图象一定过点()A.(2,-1) B.(2,1) C.(-2,-1) D.(1,2)4.已知地球上海洋面积约为361000000km2,361000000这个数用科学记数法可表示为()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1095.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.6.已知平面直角坐标系中有两个二次函数及的图象,将二次函数的图象依下列哪一种平移方式后,会使得此两图象对称轴重叠()A.向左平移4个单位长度 B.向右平移4个单位长度C.向左平移10个单位长度 D.向右平移10个单位长度7.若式子在实数范围内有意义,则的取值范围是()A. B. C. D.8.在平面直角坐标系中,反比例函数的图象经过点(1,3),则的值可以为A. B. C. D.9.下列诗句所描述的事件中,是不可能事件的是()A.黄河入海流B.锄禾日当午C.大漠孤烟直D.手可摘星辰10.在中,,,,则直角边的长是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.12.如果∠A是锐角,且sinA=,那么∠A=________゜.13.如图,正三角形AFG与正五边形ABCDE内接于⊙O,若⊙O的半径为3,则的长为______________.14.计算若,那么a2019+b2020=____________.15.将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是____.16.抛物线y=2x2+4x-1向右平移_______个单位,经过点P(4,5).17.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.18.小芳的房间有一面积为3

m2的玻璃窗,她站在室内离窗子4

m的地方向外看,她能看到窗前面一幢楼房的面积有____m2(楼之间的距离为20

m).三、解答题(共66分)19.(10分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.20.(6分)如图,在中,,.(1)在边上求作一点,使得.(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,求证:为线段的黄金分割点.21.(6分)小明开着汽车在平坦的公路上行驶,前放出现两座建筑物A、B(如图),在(1)处小颖能看到B建筑物的一部分,(如图),此时,小明的视角为30°,已知A建筑物高25米.(1)请问汽车行驶到什么位置时,小明刚好看不到建筑物B?请在图中标出这点.(2)若小明刚好看不到B建筑物时,他的视线与公路的夹角为45°,请问他向前行驶了多少米?(精确到0.1)22.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A1B1C1;(2)求出点B旋转到点B1所经过的路径长.23.(8分)解方程:(1)2x2﹣7x+3=0(2)7x(5x+2)=6(5x+2)24.(8分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积.25.(10分)(1)如图1,在△ABC中,AB>AC,点D,E分别在边AB,AC上,且DE∥BC,若AD=2,AE=,则的值是;(2)如图2,在(1)的条件下,将△ADE绕点A逆时针方向旋转一定的角度,连接CE和BD,的值变化吗?若变化,请说明理由;若不变化,请求出不变的值;(3)如图3,在四边形ABCD中,AC⊥BC于点C,∠BAC=∠ADC=θ,且tanθ=,当CD=6,AD=3时,请直接写出线段BD的长度.26.(10分)当时,求的值.

参考答案一、选择题(每小题3分,共30分)1、D【分析】直接根据顶点式的特点求顶点坐标.【详解】解:∵y=﹣3(x﹣1)2+3是抛物线的顶点式,∴顶点坐标为(1,3).故选:D.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x−h)2+k中,对称轴为x=h,顶点坐标为(h,k).2、C【分析】由题意首先根据相似三角形求得∠B的度数,然后根据特殊角的三角函数值确定正确的选项即可.【详解】解:△ABC∽△DEF,∠A=85°,∠F=50°,∴∠C=∠F=50°,∴∠B=180°-∠A-∠C=180°-85°-50°=45°,∴cosB=cos45°=.故选:C.【点睛】本题主要考查相似三角形的性质以及三角函数相关,解题的关键是熟练掌握相似三角形的对应角相等.3、A【解析】先把(-2,1)代入y=求出k得到反比例函数解析式为y=,然后根据反比例函数图象上点的坐标特征,通过计算各点的横纵坐标的积进行判断.【详解】把(-2,1)代入y=得k=-2×1=-2,

所以反比例函数解析式为y=,

因为2×(-1)=-2,2×1=2,-2×(-1)=2,1×2=2,

所以点(2,-1)在反比例函数y=的图象上.

故选A.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.4、C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:将361000000用科学记数法表示为3.61×1.故选C.5、B【分析】利用同角三角函数间的基本关系求出sinA的值即可.【详解】:∵Rt△ABC中,cosA=,

∴sinA==,

故选B.【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键.6、C【分析】将二次函数解析式展开,结合二次函数的性质找出两个二次函数的对称轴,二者做差后即可得出平移方向及距离.【详解】解:∵=ax2+6ax-7a,=bx2-14bx-15b∴二次函数的对称轴为直线x=-3,二次函数的对称轴为直线x=7,∵-3-7=-10,∴将二次函数的图象向左平移10个单位长度后,会使得此两图象对称轴重叠,故选C.【点睛】本题考查的是二次函数的图象与几何变换以及二次函数的性质,熟知二次函数的性质是解答此题的关键.7、C【解析】直接利用二次根式的定义即可得出答案.【详解】∵式子在实数范围内有意义,∴x的取值范围是:x>1.故选:C.【点睛】本题考查了二次根式有意义的条件,正确把握定义是解答本题的关键.8、B【分析】把点(1,3)代入中即可求得k值.【详解】解:把x=1,y=3代入中得,∴k=3.故选:B.【点睛】本题考查了用待定系数法求反比例函数的解析式,能理解把已知点的坐标代入解析式是解题关键.9、D【解析】不可能事件是指在一定条件下,一定不发生的事件.【详解】A、是必然事件,故选项错误;B、是随机事件,故选项错误;C、是随机事件,故选项错误;D、是不可能事件,故选项正确.故选D.【点睛】此题主要考查了必然事件,不可能事件,随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、B【分析】根据余弦的定义求解.【详解】解:∵在Rt△ABC中,∠C=90°,cosB=,

∴BC=10cos40°.

故选:B.【点睛】本题考查解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.二、填空题(每小题3分,共24分)11、1或5【分析】分类讨论:当点P在射线OA上时,过点P作PE⊥AB于点E,根据切线的性质得到PE=1cm,利用30度角所对的直角边等于斜边一半的性质的OP=2PE=2cm,求出⊙P移动的距离为4-2-1=1cm,由此得到⊙P运动时间;当点P在射线OB上时,过点P作PF⊥AB于点F,同样方法求出运动时间.【详解】当点P在射线OA上时,如图,过点P作PE⊥AB于点E,则PE=1cm,∵∠AOC=30°,∴OP=2PE=2cm,∴⊙P移动的距离为4-2-1=1cm,∴运动时间为s;当点P在射线OB上时,如图,过点P作PF⊥AB于点F,则PF=1cm,∵∠AOC=30°,∴OP=2PF=2cm,∴⊙P移动的距离为4+2-1=5cm,∴运动时间为s;故答案为:1或5.【点睛】此题考查动圆问题,圆的切线的性质定理,含30度角的直角边等于斜边一半的性质,解题中注意运用分类讨论的思想解答问题.12、1【分析】直接利用特殊角的三角函数值得出答案.【详解】解:∵∠A是锐角,且sinA=,∴∠A=1°.故答案为1.考点:特殊角的三角函数值.13、【分析】连接OB,OF,根据正五边形和正三角形的性质求出∠BAF=24°,再由圆周角定理得∠BOF=48°,最后由弧长公式求出的长.【详解】解:连接OB,OF,如图,根据正五边形、正三角形和圆是轴对称图形可知∠BAF=∠EAG,∵△AFG是等边三角形,∴∠FAG=60°,∵五边形ABCDE是正五边形,∴∠BAE=,∴∠BAF=∠EAG=(∠BAE-∠FAG)=×(108°-60°)=24°,∴∠BOF=2∠BAF=2×24°=48°,∵⊙O的半径为3,∴的弧长为:故答案为:【点睛】本题主要考查正多边形与圆、弧长公式等知识,得出圆心角度数是解题关键.14、0【分析】根据二次根式和绝对值的非负数性质可求出a、b的值,进而可得答案.【详解】∵,∴(a+1)2=0,b-1=0,解得:a=-1,b=1,∴a2019+b2020=-1+1=0,故答案为:0【点睛】本题考查二次根式和绝对值的非负数性质,如果几个非负数的和为0,那么这几个非负数分别为0;熟练掌握非负数性质是解题关键.15、【分析】根据题意先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线的顶点坐标为(0,0),向右平移1个单位,再向下平移2个单位后的图象的顶点坐标为(1,-2),所以得到图象的解析式为.故答案为:.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键.16、3或7【分析】先化成顶点式,设向右平移个单位,再由平移规律求出平移后的抛物线解析式,再把点(4,5)代入新的抛物线解析式即可求出m的值.【详解】,设抛物线向右平移个单位,得到:,∵经过点(4,5),

∴,化简得:,∴

解得:或.

故答案为:或.【点睛】本题主要考查了函数图象的平移和一个点在图象上那么这个点就满足该图象的解析式,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.17、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.18、108【解析】考点:平行投影;相似三角形的应用.分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析.解答:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有36×3=108m1.点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点.注意平行投影特点:在同一时刻,不同物体的物高和影长成比例三、解答题(共66分)19、(1)证明见解析;(2)阴影部分面积为【解析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.20、(1)见解析;(2)证明见解析.【分析】(1)利用等腰三角形的性质及AA定理,做AB的垂直平分线或∠ABC的角平分线都可,(2)利用相似三角形的性质得到,然后根据黄金分割的定义得到结论.【详解】解:(1)作法一:如图1.点为所求作的点.作法二:如图2.点为所求作的点.(2)证明:∵,∴.根据(1)的作图方法,得.∴.∴点为线段的黄金分割点.【点睛】本题考查等腰三角形的性质,相似三角形的判定和性质及尺规作图,黄金分割的定义,掌握相关性质定理是本题的解题关键.21、(1)汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)他向前行驶了18.3米.【解析】1)连接FC并延长到BA上一点E,即为所求答案;

(2)利用解Rt△AEC求AE,解Rt△ACM,求AM,利用ME=AM-AE求出他行驶的距离.【详解】解:(1)如图所示:汽车行驶到E点位置时,小明刚好看不到建筑物B;(2)∵小明的视角为30°,A建筑物高25米,∴AC=25,tan30°=ACAM=3∴AM=253,∵∠AEC=45°,∴AE=AC=25m,∴ME=AM﹣AE=43.3﹣25=18.3m.则他向前行驶了18.3米.【点睛】本题考查解直角三角形的基本方法,先分别在两个直角三角形中求相关的线段,再求差是解题关键.22、(1)见解析;(2)π.【解析】试题分析:(1)根据旋转的性质,可得答案;(2)根据线段旋转,可得圆弧,根据弧长公式,可得答案.解:(1)如图:;(2)如图2:,OB==2,点B旋转到点B1所经过的路径长=π.考点:作图-旋转变换.23、(1);(2)【分析】(1)方程左边的多项式利用十字相乘法分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;(2)方程右边看做一个整体,移项到左边,提取公因式化为积的形式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:(1)2x2﹣7x+3=0,分解因式得:(2x﹣1)(x﹣3)=0,可得2x﹣1=0或x﹣3=0,解得:x1=,x2=3;(2)7x(5x+2)=6(5x+2),移项得:7x(5x+2)﹣6(5x+2)=0,分解因式得:(7x﹣6)(5x+2)=0,可得7x﹣6=0或5x+2=0,解得:x1=,x2=﹣.【点睛】考核知识点:解一元二次方程.掌握基本方法是关键.24、(1)详见解析;(2)或【分析】(1)先证,再证,得到,即可得出结论;(2)分当时和当时两种情况分别求解即可.【详解】(1)∵,∴,∵,,∴,∵是直径,∴,∴,∴,∴,∴,∴是的切线.(2)①当时,,是等边三角形,可得,∵,∴,,∴.②当时,易知,的边上的高,∴.【点睛】此题是圆的综合题,主要

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论