2023届北京市西城区月坛中学数学九年级第一学期期末检测试题含解析_第1页
2023届北京市西城区月坛中学数学九年级第一学期期末检测试题含解析_第2页
2023届北京市西城区月坛中学数学九年级第一学期期末检测试题含解析_第3页
2023届北京市西城区月坛中学数学九年级第一学期期末检测试题含解析_第4页
2023届北京市西城区月坛中学数学九年级第一学期期末检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,一个直角梯形的堤坝坡长AB为6米,斜坡AB的坡角为60°,为了改善堤坝的稳固性,准备将其坡角改为45°,则调整后的斜坡AE的长度为()A.3米 B.3米 C.(3﹣2)米 D.(3﹣3)米2.若反比例函数y=的图象经过点(2,-1),则该反比例函数的图象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限3.如图,四边形内接于圆,过点作于点,若,,则的长度为()A. B.6 C. D.不能确定4.如图,在中,,AB=5,BC=4,点D为边AC上的动点,作菱形DEFG,使点E、F在边AB上,点G在边BC上.若这样的菱形能作出两个,则AD的取值范围是()A. B.C. D.5.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A.13 B.16 C.12或13 D.11或166.已知四边形中,对角线,相交于点,且,则下列关于四边形的结论一定成立的是()A.四边形是正方形 B.四边形是菱形C.四边形是矩形 D.7.下列事件:①经过有交通信号灯的路口,遇到红灯;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数;③长为5cm、5cm、11cm的三条线段能围成一个三角形;④买一张体育彩票中奖。其中随机事件有()A.1个 B.2个 C.3个 D.4个8.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在白色区域的概率等于()A. B. C. D.无法确定9.下列说法正确的是()A.“任意画一个三角形,其内角和为”是随机事件B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.投掷一枚质地均匀的硬币100次,正面向上的次数一定是50次10.若是方程的根,则的值为()A.2022 B.2020 C.2018 D.2016二、填空题(每小题3分,共24分)11.将抛物线向下平移个单位,那么所得抛物线的函数关系是________.12.在一个不透明的袋子中装有6个白球和若干个红球,这些球除颜色外无其他差别.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有_____个.13.点在抛物线上,则__________.(填“>”,“<”或“=”).14.如图,在□ABCD中,AB=5,AD=6,AD、AB、BC分别与⊙O相切于E、F、G三点,过点C作⊙O的切线交AD于点N,切点为M.当CN⊥AD时,⊙O的半径为____.15.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.16.某公司生产一种饮料是由A,B两种原料液按一定比例配成,其中A原料液的原成本价为10元/千克,B原料液的原成本价为5元/千克,按原售价销售可以获得50%的利润率,由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高_____元/千克.17.某医药研究所开发一种新药,成年人按规定的剂量服用,服药后每毫升血液中的含药量y(毫克)与时间t(小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.5毫克时治疗有效,则服药一次治疗疾病有效的时间为______小时.18.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线图象上的概率为__.三、解答题(共66分)19.(10分)某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是;(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.20.(6分)某校有一露天舞台,纵断面如图所示,AC垂直于地面,AB表示楼梯,AE为舞台面,楼梯的坡角∠ABC=45°,坡长AB=2m,为保障安全,学校决定对该楼梯进行改造,降低坡度,拟修新楼梯AD,使∠ADC=30°(1)求舞台的高AC(结果保留根号)(2)楼梯口B左侧正前方距离舞台底部C点3m处的文化墙PM是否要拆除?请说明理由.21.(6分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+1.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.22.(8分)如图,一次函数的图象与反比例函数的图象交于,B

两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x的取值范围.23.(8分)已知直线与是的直径,于点.(1)如图①,当直线与相切于点时,若,求的大小;(2)如图②,当直线与相交于点时,若,求的大小.24.(8分)已知,,,(如图),点,分别为射线上的动点(点C、E都不与点B重合),连接AC、AE使得,射线交射线于点,设,.(1)如图1,当时,求AF的长.(2)当点在点的右侧时,求关于的函数关系式,并写出函数的定义域.(3)连接交于点,若是等腰三角形,直接写出的值.25.(10分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.(1)该店销售该商品原来一天可获利润元.(2)设后来该商品每件售价降价元,此店一天可获利润元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.26.(10分)(1)3tan30°-tan45°+2sin60°(2)

参考答案一、选择题(每小题3分,共30分)1、A【分析】如图(见解析),作于H,在中,由可以求出AH的长,再在中,由即可求出AE的长.【详解】如图,作于H在中,则在中,则故选:A.【点睛】本题考查了锐角三角函数,熟记常见角度的三角函数值是解题关键.2、D【解析】试题分析:反比例函数的图象经过点,求出K=-2,当K>0时反比例函数的图象在第一、三象限,当K〈0时反比例函数的图象在第二、四象限,因为-2〈0,D正确.故选D考点:反比例函数的图象的性质.3、B【分析】首先根据圆内接四边形的性质求得∠A的度数,然后根据解直角三角形的方法即可求解.【详解】∵四边形ABCD内接于⊙O,,∴∠A=180−120=60,∵BH⊥AD,,∴BH=AHtan60°=,故选:B.【点睛】本题考查了圆内接四边形及勾股定理的知识,解题的关键是熟知解直角三角形的方法.4、B【分析】因为在中只能作出一个正方形,所以要作两个菱形则AD必须小于此时的AD,也即这是AD的最大临界值;当AD等于菱形边长时,这时恰好可以作两个菱形,这是AD最小临界值.然后分别在这2种情形下,利用相似三角形的性质求出AD即可.【详解】过C作交DG于M由三角形的面积公式得即,解得①当菱形DEFG为正方形时,则只能作出一个菱形设:,为菱形,,,即,得()若要作两个菱形,则;②当时,则恰好作出两个菱形设:,过D作于H,由①知,,,得综上,故选:B.【点睛】本题考查了相似三角形的性质、锐角三角函数,依据图形的特点判断出两个临界值是解题关键.5、A【分析】首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.【详解】∵x2-5x+6=0,

∴(x-3)(x-2)=0,

解得:x1=3,x2=2,

∵三角形的两边长分别是4和6,

当x=3时,3+4>6,能组成三角形;

当x=2时,2+4=6,不能组成三角形.

∴这个三角形的第三边长是3,

∴这个三角形的周长为:4+6+3=13.

故选A.【点睛】此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.6、C【分析】根据OA=OB=OC=OD,判断四边形ABCD是平行四边形.然后根据AC=BD,判定四边形ABCD是矩形.【详解】,四边形是平行四边形且,是矩形,题目没有条件说明对角线相互垂直,∴A、B、D都不正确;故选:C【点睛】本题是考查矩形的判定方法,常见的又3种:①一个角是直角的四边形是矩形;②三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.7、B【分析】由题意直接根据事件发生的可能性大小对各事件进行依次判断.【详解】解:①经过有交通信号灯的路口,遇到红灯,是随机事件;②掷一枚均匀的正方体骰子,骰子落地后朝上的点数不是奇数便是偶数,是必然事件;③长为5cm、5cm、11cm的三条线段能围成一个三角形,是不可能事件;④买一张体育彩票中奖,是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8、C【分析】根据概率P(A)=事件A可能出现的结果数:所有可能出现的结果数可得答案.【详解】以自由转动的转盘,被分成了6个相同的扇形,白色区域有4个,因此=,故选:C.【点睛】此题主要考查概率的求解,解题的关键是熟知几何概率的求解方法.9、C【分析】根据必然事件,随机事件,可能事件的概念解题即可.【详解】解:A.“任意画一个三角形,其内角和为”是不可能事件,错误,B.某种彩票的中奖率是,说明每买100张彩票,一定有1张中奖,可能事件不等于必然事件,错误,C.“篮球队员在罚球线上投篮一次,投中”为随机事件,正确,D.投掷一枚质地均匀的硬币100次,正面向上的次数可能是50次,错误,故选C.【点睛】本题考查了必然事件,随机事件,可能事件的概念,属于简单题,熟悉概念是解题关键.10、B【分析】根据一元二次方程的解的定义,将x=m代入已知方程,即可求得(m2+m)的值,然后将其整体代入所求的代数式进行求值即可.【详解】依题意得:m2+m-1=0,

则m2+m=1,

所以2m2+2m+2018=2(m2+m)+2018=2×1+2018=1.

故选:B.【点睛】此题考查一元二次方程的解.解题关键在于能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.二、填空题(每小题3分,共24分)11、【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律写出平移后顶点坐标,然后利用顶点式写出平移后的抛物线解析式.【详解】解:的顶点坐标为,把点向下平移个单位得到的对应点的坐标为,所以平移后的抛物线的解析式是.故答案为:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.12、1【分析】设袋子中的红球有x个,利用红球在总数中所占比例得出与试验比例应该相等求出即可.【详解】解:设袋子中的红球有x个,根据题意,得:=0.7,解得:x=1,经检验:x=1是分式方程的解,∴袋子中红球约有1个,故答案为:1.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列式求解.13、>【分析】把A、B两点的坐标代入抛物线的解析式,求出的值即得答案.【详解】解:把A、B两点的坐标代入抛物线的解析式,得:,,∴>.故答案为:>.【点睛】本题考查了二次函数的性质和二次函数图象上点的坐标特征,属于基本题型,掌握比较的方法是解答关键.14、2或1.5【分析】根据切线的性质,切线长定理得出线段之间的关系,利用勾股定理列出方程解出圆的半径.【详解】解:设半径为r,∵AD、AB、BC分别与⊙O相切于E、F、G三点,AB=5,AD=6∴GC=r,BG=BF=6-r,∴AF=5-(6-r)=r-1=AE∴ND=6-(r-1)-r=7-2r,在Rt△NDC中,NC2+ND2=CD2,

(7-r)2+(2r)2=52,解得r=2或1.5.故答案为:2或1.5.【点睛】本题考查了切线的性质,切线长定理,勾股定理,平行四边形的性质,正确得出线段关系,列出方程是解题关键.15、x1=-1,x2=1【分析】根据抛物线的轴对称性以及对称轴的位置,可得抛物线与x轴的另一个交点的横坐标,进而即可求解.【详解】∵二次函数的部分图象与x轴的交点的横坐标为1,对称轴为:直线x=1,∴抛物线与x轴的另一个交点的横坐标为-1,∴的解为:x1=-1,x2=1.故答案是:x1=-1,x2=1.【点睛】本题主要考查二次函数图象的轴对称性以及二次函数与一元二次方程的关系,根据抛物线的轴对称性,得到抛物线与x轴另一个交点的横坐标,是解题的关键.16、1【分析】设配制比例为1:x,则A原液上涨后的成本是10(1+20%)元,B原液上涨后的成本是5(1+40%)x元,配制后的总成本是(10+5x)(1+),根据题意可得方程10(1+20%)+5(1+40%)x=(10+5x)(1+),解可得配制比例,然后计算出原来每千克的成本和售价,然后表示出此时每千克成本和售价,即可算出此时售价与原售价之差.【详解】解:设配制比例为1:x,由题意得:10(1+20%)+5(1+40%)x=(10+5x)(1+),解得x=4,则原来每千克成本为:=1(元),原来每千克售价为:1×(1+50%)=9(元),此时每千克成本为:1×(1+)(1+25%)=10(元),此时每千克售价为:10×(1+50%)=15(元),则此时售价与原售价之差为:15﹣9=1(元).故答案为:1.【点睛】本题考查了一元一次方程的应用,仔细阅读题目,找到关系式是解题的关键.17、7.1【分析】将点(1,4)分别代入y=kt,中,求k、m,确定函数关系式,再把y=0.5代入两个函数式中求t,把所求两个时间t作差即可.【详解】解:把点(1,4)分别代入y=kt,中,得k=4,m=4,∴y=4t,,把y=0.5代入y=4t中,得t1=,把y=0.5代入中,得t2=,∴治疗疾病有效的时间为:t2-t1=故答案为:7.1.【点睛】本题考查了本题主要考查函数模型的选择与应用、反比例函数、一次函数的实际应用.关键是用待定系数法求函数关系式,理解题意,根据已知函数值求自变量的差.18、【解析】根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.【详解】画树状图得:

∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线图象上的只有(3,2),

∴点(a,b)在图象上的概率为.【点睛】本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.三、解答题(共66分)19、(1),(2);(3)(人)【解析】(1)根据条形统计图将男生人数和女生人数分别加起来即可(2)众数:一组数据中出现次数最多的数值,叫众数(3)先计算所抽取的80中优秀的人数有14+13+5+7+2+1+1+1=44人,故七年级名学生中成绩为优秀的学生人数大约是(人)【详解】解:(1)男生人数:1+2+2+4+9+14+5+2+1=40(人)女生人数:1+1+2+3+11+13+7+1+1=40(人)(2)根据条形统计图,分数为时女生人数达到最大,故众数为27(3)(人)【点睛】本题考查了条形统计图,数据的分析,用样本估计总体,解题的关键是读懂统计图表,获取每项的准确数值.20、(1)m;(2)不需拆除文化墙PM,理由见解析.【分析】(1)根据锐角三角函数,即可求出AC;(2)由题意可知:CM=3m,根据锐角三角函数即可求出DC,最后比较DC和CM的大小即可判断.【详解】解:(1)在Rt△ABC中,∠ABC=45°,坡长AB=2m,∴AC=AB·sin∠ABC=m答:舞台的高AC为m;(2)不需拆除文化墙PM,理由如下,由题意可知:CM=3m在Rt△ADC中,∠ADC=30°,AC=m∴DC=m∵m<3m∴DC<CM∴不需拆除文化墙PM.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.21、(1)W1=﹣x2+32x﹣2;(2)该产品第一年的售价是16元;(3)该公司第二年的利润W2至少为18万元.【解析】(1)根据总利润=每件利润×销售量﹣投资成本,列出式子即可;(2)构建方程即可解决问题;(3)根据题意求出自变量的取值范围,再根据二次函数,利用而学会设的性质即可解决问题.【详解】(1)W1=(x﹣6)(﹣x+1)﹣80=﹣x2+32x﹣2.(2)由题意:20=﹣x2+32x﹣2.解得:x=16,答:该产品第一年的售价是16元.(3)由题意:7≤x≤16,W2=(x﹣5)(﹣x+1)﹣20=﹣x2+31x﹣150,∵7≤x≤16,∴x=7时,W2有最小值,最小值=18(万元),答:该公司第二年的利润W2至少为18万元.【点睛】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题.22、(1);;(2)或;【解析】(1)利用点A的坐标可求出反比例函数解析式,再把B(4,n)代入反比例函数解析式,即可求得n的值,于是得到一次函数的解析式;(2)根据图象和A,B两点的坐标即可写出一次函数的值大于反比例函数时自变量x的取值范围.【详解】(1)

过点,,反比例函数的解析式为;点在

上,,

,一次函数过点,

,解得:.一次函数解析式为;(2)由图可知,当或时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.23、(1)30°;(2)18°【分析】(1)连接OC,根据已知条件得出,,根据平行线的性质得出,进而求得答案(2)连接EB,得出,从而得出,与为同弧所对的角,因此两角相等.【详解】解:(1)连接,是的切线,,,,,,,(2)连接,是的直径,,,,,,【点睛】本题是一道关于圆的综合性题目,考查到的知识点有圆的切线定理,平行线的性质,等边三角形的判定以及圆周角定理等,通过作辅助线综合分析是解题的关键.24、(1);(2);(3)或或.【分析】过点作于N,利用∠B的余弦值可求出BN的长,利用勾股定理即可求出AN的长,根据线段的和差关系可得CN的长,利用勾股定理可求出AC的长,根据AD//BC,AD=BC即可证明四边形ABCD是平行四边形,可得∠B=∠D,进而可证明△ABC∽△ADF,根据相似三角形的性质即可求出AF的长;(2)根据平行线的性质可得,根据等量代换可得,进而可证明△ABC∽△ABE,根据相似三角形的性质可得,可用x表示出BE、CE的长,根据平行线分线段成比例定理可用x表示出的值,根据可得y与x的关系式,根据x>0,CE>0即可确定x的取值范围;(3)分PA=PD、AP=AD和AD=PD三种情况,根据BE=及线段的和差关系,分别利用勾股定理列方程求出x的值即可得答案.【详解】(1)如图,过点作于N,∵AB=5,,∴在中,=5×=3,∴AN===4,∵BC=x=4,∴CN=BC-BN=4-3=1,在中,,∵AD=4,BC=x=4,∴AD=BC,∵,∴四边形为平行四边形,∴,又∵,∴△ABC∽△ADF,∴,∴解得:,(2)∵,∴,∵,∴,又∵∠B=∠B,∴△ABC∽△ABE,∴,∴,∵AD//BC,∴,∴,∵x>0,CE=>0,∴0<x<5,∴,(3)①如图,当PA=PD时,作AH⊥BM于H,PG⊥AD于G,延长GP交BM于N,∵PA=PD,AD=4,∴AG=DG=2,∠ADB=∠DAE,∵AD//BE,∴GN⊥BE,∠DAE=∠AEB,∠ADB=∠DBE,∴∠DBE=∠AEB,∴PB=PE,∴BN=EN=BE=,∵,AB=5,∴BH=AB·cos∠ABH=3,∵AH⊥BM,GN⊥MB,GN⊥AD,∴∠AHN=∠GNH=∠NGA=90°,∴四边形AHNG是矩形,∴HN=AG=2,∴BN=BH+HN=3+2=5,∴=5,解得:x=.②如图,当AP=AD=4时,作AH⊥BM于H,∴∠ADB=∠APD,∵AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论