上海市宝山区刘行新华实验学校2025届九年级数学第一学期期末监测模拟试题含解析_第1页
上海市宝山区刘行新华实验学校2025届九年级数学第一学期期末监测模拟试题含解析_第2页
上海市宝山区刘行新华实验学校2025届九年级数学第一学期期末监测模拟试题含解析_第3页
上海市宝山区刘行新华实验学校2025届九年级数学第一学期期末监测模拟试题含解析_第4页
上海市宝山区刘行新华实验学校2025届九年级数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市宝山区刘行新华实验学校2025届九年级数学第一学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形 B.平行四边形 C.矩形 D.正五边形2.如图,空地上(空地足够大)有一段长为的旧墙,小敏利用旧墙和木栏围成一个矩形菜园,已知木栏总长,矩形菜园的面积为.若设,则可列方程()A. B.C. D.3.如图,从一块半径为的圆形铁皮上剪出一个圆心角是的扇形,则此扇形围成的圆锥的侧面积为()A. B. C. D.4.如图,正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D,F在x轴上,点C在DE边上,反比例函数y=(k≠0)的图象经过点B、C和边EF的中点M.若S正方形ABCD=2,则正方形DEFG的面积为()A. B. C.4 D.5.在平面直角坐标系中,正方形,,,,,按如图所示的方式放置,其中点在轴上,点,,,,,,…在轴上,已知正方形的边长为1,,,…,则正方形的边长是()A. B. C. D.6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x

-2

-1

0

1

2

y

0

4

6

6

4

观察上表,得出下面结论:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+C的最大值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x增大而增大.其中正确有()A.1个 B.2个 C.3个 D.4个7.在△ABC中,∠C=90°.若AB=3,BC=1,则cosB的值为()A. B. C. D.38.如图,已知点在反比例函数上,轴,垂足为点,且的面积为,则的值为()A. B. C. D.9.下列方程中有一个根为﹣1的方程是()A.x2+2x=0 B.x2+2x﹣3=0 C.x2﹣5x+4=0 D.x2﹣3x﹣4=010.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是()A.15π B.20π C.24π D.30π11.如图,路灯距离地面8米,若身高1.6米的小明在距离路灯的底部(点O)20米的A处,则小明的影子AM的长为()A.1.25米 B.5米 C.6米 D.4米12.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°,得到△A1B1C1,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1) D.(1,﹣2)二、填空题(每题4分,共24分)13.在Rt△ABC中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____.14.计算:的结果为____________.15.已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为_____.16.在直径为4cm的⊙O中,长度为的弦BC所对的圆周角的度数为____________.17.已知菱形中,,,边上有点点两动点,始终保持,连接取中点并连接则的最小值是_______.18.超市经销一种水果,每千克盈利10元,每天销售500千克,经市场调查,若每千克涨价1元,日销售量减少20千克,现超市要保证每天盈利6000元,每千克应涨价为______元.三、解答题(共78分)19.(8分)(1)解方程:;(2)计算:20.(8分)定义:有且仅有一组对角相等的凸四边形叫做“准平行四边形”.例如:凸四边形中,若,则称四边形为准平行四边形.(1)如图①,是上的四个点,,延长到,使.求证:四边形是准平行四边形;(2)如图②,准平行四边形内接于,,若的半径为,求的长;(3)如图③,在中,,若四边形是准平行四边形,且,请直接写出长的最大值.21.(8分)解方程:x+3=x(x+3)22.(10分)某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.求一次函数的表达式;若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?23.(10分)小亮晚上在广场散步,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置.(1)请你在图中画出小亮站在AB处的影子BE;(2)小亮的身高为1.6m,当小亮离开灯杆的距离OB为2.4m时,影长为1.2m,若小亮离开灯杆的距离OD=6m时,则小亮(CD)的影长为多少米?24.(10分)如图,已知抛物线经过,及原点,顶点为.(1)求抛物线的函数解析式;(2)设点在抛物线上,点在抛物线的对称轴上,且以、、,为顶点,为边的四边形是平行四边形,求点的坐标;(3)是抛物线上第一象限内的动点,过点作轴,垂足为.是否存在这样的点,使得以,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.25.(12分)某商店销售一种商品,每件成本8元,规定每件商品售价不低于成本,且不高于20元,经市场调查每天的销售量y(件)与每件售价x(元)满足一次函数关系,部分数据如下表:售价x(元件)1011121314x销售量y(件)100908070(1)将上面的表格填充完整;(2)设该商品每天的总利润为w元,求w与x之间的函数表达式;(3)计算(2)中售价为多少元时,获得最大利润,最大利润是多少?26.平安超市准备进一批书包,每个进价为元.经市场调查发现,售价为元时可售出个;售价每增加元,销售量将减少个.超市若准备获得利润元,并且使进货量较少,则每个应定价为多少

参考答案一、选择题(每题4分,共48分)1、C【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选C.点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2、B【分析】设,则,根据矩形面积公式列出方程.【详解】解:设,则,由题意,得.故选.【点睛】考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.3、A【分析】连接OB、OC和BC,过点O作OD⊥BC于点D,然后根据同弧所对的圆周角是圆心角的一半、等边三角形判定和垂径定理可得∠BOC=2∠BAC=120°,△ABC为等边三角形,BC=2BD,然后根据锐角三角函数即可求出BD,从而求出BC和AB,然后根据扇形的面积公式计算即可.【详解】解:连接OB、OC和BC,过点O作OD⊥BC于点D由题意可得:OB=OC=20cm,∠BAC=60°,AB=AC∴∠BOC=2∠BAC=120°,△ABC为等边三角形,BC=2BD∴∠OBC=∠OCB=(180°-∠BOC)=30°,AB=AC=BC在Rt△OBD中,BD=OB·cos∠OBD=cm∴BC=2BD=cm∴AB=BC=cm∴圆锥的侧面积=S扇形BAC=故选A.【点睛】此题考查的是圆周角定理、垂径定理、等边三角形的判定及性质、锐角三角函数和求圆锥侧面积,掌握圆周角定理、垂径定理、等边三角形的判定及性质、锐角三角函数和扇形的面积公式是解决此题的关键.4、B【分析】作BH⊥y轴于H,连接EG交x轴于N,进一步证明△AOD和△ABH都是等腰直角三角形,然后再求出反比例函数解析式为y=,从而进一步求解即可.【详解】作BH⊥y轴于H,连接EG交x轴于N,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD和△ABH都是等腰直角三角形,∵S正方形ABCD=2,∴AB=AD=,∴OD=OA=AH=BH=×=1,∴B点坐标为(1,2),把B(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,设DN=a,则EN=NF=a,∴E(a+1,a),F(2a+1,0),∵M点为EF的中点,∴M点的坐标为(,),∵点M在反比例函数y=的图象上,∴×=2,整理得3a2+2a﹣8=0,解得a1=,a2=﹣2(舍去),∴正方形DEFG的面积=2∙EN∙DF=2∙=.故选:B.【点睛】本题主要考查了正方形的性质与反比例函数的综合运用,熟练掌握相关概念是解题关键.5、D【分析】利用正方形的性质结合锐角三角函数关系得出正方形边长,进而即可找到规律得出答案.【详解】∵正方形的边长为1,,,…同理可得故正方形的边长为故选:D.【点睛】本题主要考查正方形的性质和锐角三角函数,利用正方形的性质和锐角三角函数找出规律是解题的关键.6、C【解析】从表中可知,抛物线过(0,6),(1,6),所以可得抛物线的对称轴是x=,故③正确.当x=-2时,y=0,根据对称性当抛物线与x轴的另一个交点坐标为x=×2+2=3.故①;当x=2时,y=4,所以在对称轴的右侧,随着x增大,y在减小,所以抛物线开口向下.故其在顶点处取得最大值,应大于6,故②错,④对.选C.7、A【分析】直接利用锐角三角函数关系的答案.【详解】如图所示:∵AB=3,BC=1,∴cosB==.故选:A.【点睛】考核知识点:余弦.熟记余弦定义是关键.8、C【分析】根据反比例函数中的比例系数k的几何意义即可得出答案.【详解】∵点在反比例函数,的面积为故选:C.【点睛】本题主要考查反比例函数中的比例系数k的几何意义,掌握反比例函数中的比例系数k的几何意义是解题的关键.9、D【分析】利用一元二次方程解的定义对各选项分别进行判断.【详解】解:A、当x=﹣1时,x2+2x=1﹣2=﹣1,所以x=﹣1不是方程x2+2x=0的解;B、当x=﹣1时,x2+2x﹣3=1﹣2﹣3=﹣4,所以x=﹣1不是方程x2+2x﹣3=0的解;C、当x=﹣1时,x2﹣5x+4=1+5+4=10,所以x=﹣1不是方程x2﹣5x+4=0的解;D、当x=﹣1时,x2﹣3x﹣4=1+3﹣4=0,所以x=﹣1是方程x2﹣3x﹣4=0的解.故选:D.【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10、A【解析】试题分析:∵圆锥的主视图是腰长为5,底边长为6的等腰三角形,∴这个圆锥的底面圆的半径为3,母线长为5.∴这个圆锥的侧面积=.故选A.考点:1.简单几何体的三视图;2.圆锥的计算.11、B【分析】易得:△ABM∽△OCM,利用相似三角形对应边成比例可得出小明的影子AM的长.【详解】如图,根据题意,易得△MBA∽△MCO,

根据相似三角形的性质可知,即,

解得AM=5m.

则小明的影子AM的长为5米.

故选:B.【点睛】此题考查相似三角形的应用,利用相似三角形对应边成比例列出比例式是解题的关键.12、C【解析】先根据旋转的性质得到点A的对应点为点,点B的对应点为点,点C的对应点为点,再根据旋转的性质得到旋转中心在线段的垂直平分线上,也在线段的垂直平分线上,即两垂直平分线的交点为旋转中心,而易得线段的垂直平分线为直线x=1,线段的垂直平分线为以为对角线的正方形的另一条对角线所在的直线上.【详解】∵将△ABC以某点为旋转中心,顺时针旋转90°得到△,

∴点A的对应点为点,点B的对应点为点,点C的对应点为点

作线段和的垂直平分线,它们的交点为P(1,-1),

∴旋转中心的坐标为(1,-1).

故选C.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.二、填空题(每题4分,共24分)13、1【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为1,故答案为1.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.14、【分析】根据二次根式的乘法法则得出.【详解】.故答案为:.【点睛】本题主要考查了二次根式的乘法运算.二次根式的乘法法则:.15、1【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)-3α,然后利用整体代入的方法计算即可.【详解】解:∵α,β是方程x2﹣3x﹣4=1的两个实数根,∴α+β=3,αβ=-4,∴α2+αβ﹣3α=α(α+β)-3α=3α-3α=1.故答案为1【点睛】本题主要考查了根与系数的关系,解题的关键是利用整体法代值计算,此题难度一般.16、60°或120°【分析】如下图所示,分两种情况考虑:D点在优弧CDB上或E点在劣弧BC上时,根据三角函数可求出∠OCF的大小,进而求出∠BOC的大小,再由圆周角定理可求出∠D、∠E大小,进而得到弦BC所对的圆周角.【详解】解:分两种情况考虑:D在优弧CDB上或E在劣弧BC上时,可得弦BC所对的圆周角为∠D或∠E,如下图所示,作OF⊥BC,由垂径定理可知,F为BC的中点,∴CF=BF=BC=,又直径为4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圆内接四边形的对角互补,∴∠E=120°,则弦BC所对的圆周角为60°或120°.故答案为:60°或120°.【点睛】此题考查了圆周角定理,圆内接四边形的性质,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握圆周角定理是解本题的关键.17、1【分析】过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.由菱形性质和可证明,进而可得,由BM最小值为BH即可求解.【详解】解:过D点作DH⊥BC交BC延长线与H点,延长EF交DH与点M,连接BM.∵在菱形中,,,∴,,∴,∵,,∴,∴,又∵,∴,∴,又∵,∴,∴当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,∵在菱形中,,∴又∵在Rt△CHD中,,∴,∴,∴AM的最小值为6,∴的最小值是1.故答案为:1.【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.18、5或1【分析】设每千克水果应涨价x元,得出日销售量将减少20x千克,再由盈利额=每千克盈利×日销售量,依题意得方程求解即可.【详解】解:设每千克水果应涨价x元,依题意得方程:(500-20x)(1+x)=6000,整理,得x2-15x+50=0,解这个方程,得x1=5,x2=1.答:每千克水果应涨价5元或1元.故答案为:5或1.【点睛】本题考查了一元二次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.三、解答题(共78分)19、(1)x1=-1,x2=4;(2)原式=【分析】(1)按十字相乘的一般步骤,求方程的解即可;(2)把函数值直接代入,求出结果【详解】解:(1)(x+1)(x-4)=0∴x1=-1,x2=4;(2)原式=+-2×=【点睛】本题考查了因式分解法解一元二次过程、特殊角的三角函数值及实数的运算,解决(1)的关键是掌握十字相乘的一般步骤;解决(2)的关键是记住特殊角的三角函数值.20、(1)见解析;(2);(3)【分析】(1)先根据同弧所对的圆周角相等证明三角形ABC为等边三角形,得到∠ACB=60°,再求出∠APB=60°,根据AQ=AP判定△APQ为等边三角形,∠AQP=∠QAP=60°,故∠ACB=∠AQP,可判断∠QAC>120°,∠QBC<120°,故∠QAC≠∠QBC,可证四边形是准平行四边形;(2)根据已知条件可判断∠ABC≠∠ADC,则可得∠BAD=∠BCD=90°,连接BD,则BD为直径为10,根据BC=CD得△BCD为等腰直角三角形,则∠BAC=∠BDC=45°,在直角三角形BCD中利用勾股定理或三角函数求出BC的长,过B点作BE⊥AC,分别在直角三角形ABE和△BEC中,利用三角函数和勾股定理求出AE、CE的长,即可求出AC的长.(3)根据已知条件可得:∠ADC=∠ABC=60°,延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),连接BO交弧AE于D点,则此时BD的长度最大,根据已知条件求出BO、OD的长度,即可求解.【详解】(1)∵∴∠ABC=∠BAC=60°∴△ABC为等边三角形,∠ACB=60°∵∠APQ=180°-∠APC-∠CPB=60°又AP=AQ∴△APQ为等边三角形∴∠AQP=∠QAP=60°∴∠ACB=∠AQP∵∠QAC=∠QAP+∠PAB+∠BAC=120°+∠PAB>120°故∠QBC=360°-∠AQP-∠ACB-∠QAC<120°∴∠QAC≠∠QBC∴四边形是准平行四边形(2)连接BD,过B点作BE⊥AC于E点∵准平行四边形内接于,∴∠ABC≠∠ADC,∠BAD=∠BCD∵∠BAD+∠BCD=180°∴∠BAD=∠BCD=90°∴BD为的直径∵的半径为5∴BD=10∵BC=CD,∠BCD=90°∴∠CBD=∠BDC=45°∴BC=BDsin∠BDC=10,∠BAC=∠BDC=45°∵BE⊥AC∴∠BEA=∠BEC=90°∴AE=ABsin∠BAC=6∵∠ABE=∠BAE=45°∴BE=AE=在直角三角形BEC中,EC=∴AC=AE+EC=(3)在中,∴∠ABC=60°∵四边形是准平行四边形,且∴∠ADC=∠ABC=60°延长BC到E点,使BE=BA,可得三角形ABE为等边三角形,∠E=60°,过A、E、C三点作圆o,因为∠ACE=90°,则AE为直径,点D在点C另一侧的弧AE上(点A、点E除外),此时,∠ADC=∠AEC=60°,连接BO交弧AE于D点,则此时BD的长度最大.在等边三角形ABE中,∠ACB=90°,BC=2∴AE=BE=2BC=4∴OE=OA=OD=2∴BO⊥AE∴BO=BEsin∠E=4∴BD=BO+0D=2+即BD长的最大值为2+【点睛】本题考查的是新概念及圆的相关知识,理解新概念的含义、掌握圆的性质是解答的关键,本题的难点在第(3)小问,考查的是与圆相关的最大值及最小值问题,把握其中的不变量作出圆是关键.21、x1=1,x2=﹣1【分析】先利用乘法分配律将括号外面的分配到括号里面,再通过移项化成一元二次方程的标准形式,利用提取公因式即可得出结果.【详解】解:方程移项得:(x+1)﹣x(x+1)=0,分解因式得:(x+1)(1﹣x)=0,解得:x1=1,x2=﹣1.【点睛】本题主要考查的是一元二次方程的解法,一元二次方程的解法主要包括:提取公因式,公式法,十字相乘等.22、(1);(2)销售单价定为元时,商场可获得最大利润,最大利润是元.【分析】(1)根据题意将(65,55),(75,45)代入解二元一次方程组即可;(2)表示出利润解析式,化成顶点式讨论即可解题.【详解】解:根据题意得,解得.所求一次函数的表达式为.(2),∵抛物线的开口向下,∴当时,随的增大而增大,又因为获利不得高于45%,60所以,∴当时,.∴当销售单价定为元时,商场可获得最大利润,最大利润是元.【点睛】本题考查了二次函数的实际应用,中等难度,表示出二次函数的解析式是解题关键.23、(1)如图,BE为所作;见解析;(2)小亮(CD)的影长为3m.【分析】(1)根据光是沿直线传播的道理可知在小亮由B处沿BO所在的方向行走到达O处的过程中,连接PA并延长交直线BO于点E,则可得到小亮站在AB处的影子;(2)根据灯的光线与人、灯杆、地面形成的两个直角三角形相似解答即可.【详解】(1)如图,连接PA并延长交直线BO于点E,则线段BE即为小亮站在AB处的影子:(2)延长PC交OD于F,如图,则DF为小亮站在CD处的影子,AB=CD=1.6,OB=2.4,BE=1.2,OD=6,∵AB∥OP,∴△EBA∽△EOP,∴即解得OP=4.8,∵CD∥OP,∴△FCD∽△FPO,∴,即,解得FD=3答:小亮(CD)的影长为3m.【点睛】本题考查的是相似三角形的判定及性质,解答此题的关键是根据题意画出图形,构造出相似三角形,再根据相似三角形的性质解答.24、(1);(2)点的坐标为:(1,3);(3)存在.符合条件的点有两个,分别是或(3,15).【分析】(1)由于抛物线经过A(-2,0),B(-3,3)及原点O,待定系数法即可求出抛物线的解析式;

(2)根据平行四边形的性质,对边平行且相等,可以求出点D的坐标;

(3)分两种情况讨论,①△AMP∽△BOC,②PMA∽△BOC,根据相似三角形对应边的比相等可以求出点P的坐标.【详解】解:(1)设抛物线的解析式为,将点,,代入,可得:,解得:.故函数解析式为:;(2)当AO为平行四边形的边时,DE∥AO,DE=AO,由A(-2,0)知:DE=AO=2,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论