版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届山西省临汾市九年级数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.若要得到函数的图象,只需将函数的图象()A.先向右平移1个单位长度,再向上平移2个单位长度B.先向左平移1个单位长度,再向上平移2个单位长度C.先向左平移1个单位长度,再向下平移2个单位长度D.先向右平移1个单位长度,再向下平移2个单位长度2.下列说法正确的是()A.某一事件发生的可能性非常大就是必然事件B.2020年1月27日杭州会下雪是随机事件C.概率很小的事情不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次3.已知,则()A.1 B.2 C.4 D.84.一个扇形半径30cm,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为()A.5cm B.10cm C.20cm D.30cm5.点A(﹣3,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3 B.y3<y2<y1 C.y3<y1<y2 D.y2<y1<y36.目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389 B.389(1+x)2=438C.389(1+2x)=438 D.438(1+2x)=3897.抛物线y=(x﹣1)2+3的顶点坐标是()A.(1,3) B.(﹣1,3) C.(1,﹣3) D.(3,﹣1)8.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为(
)A. B. C. D.9.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是G,过点B作BE⊥CG,垂足为E,且在AD上,BE交PC于点F,那么下列选项正确的是()①BP=BF;②如图1,若点E是AD的中点,那么△AEB≌△DEC;③当AD=25,且AE<DE时,则DE=16;④在③的条件下,可得sin∠PCB=;⑤当BP=9时,BE∙EF=108.A.①②③④ B.①②④⑤ C.①②③⑤ D.①②③④⑤10.下列图形中,既是中心对称图形又是轴对称图形的有几个()A.4个 B.3个 C.2个 D.1个二、填空题(每小题3分,共24分)11.已知以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为____________.12.若反比例函数的图像在二、四象限,其图像上有两点,,则______(填“”或“”或“”).13.如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则__.的整数).14.如图,,与相交于点,若,,则的值是_______.15.如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,当四边形ABCD的边至少满足条件时,四边形EFGH是矩形.16.如图,在中,已知依次连接的三边中点,得,再依次连接的三边中点得,···,则的周长为_____________________.17.如图1表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点,当钟面显示点分时,分针垂直与桌面,点距离桌面的高度为公分,若此钟面显示点分时,点距桌面的高度为公分,如图2,钟面显示点分时,点距桌面的高度_________________.18.如图,的顶点都在正方形网格的格点上,则的值为________.三、解答题(共66分)19.(10分)如图,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC边上一点,且BD=CD,G是BC边上的一动点,GE∥AD分别交直线AC,AB于F,E两点.(1)AD=;(2)如图1,当GF=1时,求的值;(3)如图2,随点G位置的改变,FG+EG是否为一个定值?如果是,求出这个定值,如果不是,请说明理由.20.(6分)已知△OAB在平面直角坐标系中的位置如图所示.请解答以下问题:(1)按要求作图:先将△ABO绕原点O逆时针旋转90°得△OA1B1,再以原点O为位似中心,将△OA1B1在原点异侧按位似比2:1进行放大得到△OA2B2;(2)直接写出点A1的坐标,点A2的坐标.21.(6分)在如图所示的平面直角坐标系中,已知点A(﹣3,﹣3),点B(﹣1,﹣3),点C(﹣1,﹣1).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1,并写出A1点的坐标:;(3)以O为位似中心,在第一象限内把△ABC扩大到原来的两倍,得到△A2B2C2,并写出A2点的坐标:.22.(8分)如图,在平面直角坐标系中,抛物线y=ax2+bx+6经过点A(﹣3,0)和点B(2,0),直线y=h(h为常数,且0<h<6)与BC交于点D,与y轴交于点E,与AC交于点F.(1)求抛物线的解析式;(2)连接AE,求h为何值时,△AEF的面积最大.(3)已知一定点M(﹣2,0),问:是否存在这样的直线y=h,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.23.(8分)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣1,0),且tan∠ACO=1.(1)求该反比例函数和一次函数的解析式;(1)求点B的坐标.24.(8分)解方程:(1)用公式法解方程:3x2﹣x﹣4=1(2)用配方法解方程:x2﹣4x﹣5=1.25.(10分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴相交于点A、B,与y轴相交于点C,B点的坐标为(6,0),点M为抛物线上的一个动点.(1)若该二次函数图象的对称轴为直线x=4时:①求二次函数的表达式;②当点M位于x轴下方抛物线图象上时,过点M作x轴的垂线,交BC于点Q,求线段MQ的最大值;(2)过点M作BC的平行线,交抛物线于点N,设点M、N的横坐标为m、n.在点M运动的过程中,试问m+n的值是否会发生改变?若改变,请说明理由;若不变,请求出m+n的值.26.(10分)如图,在中,,垂足为平分,交于点,交于点.(1)若,求的长;(2)过点作的垂线,垂足为,连接,试判断四边形的形状,并说明原因.
参考答案一、选择题(每小题3分,共30分)1、A【分析】找出两抛物线的顶点坐标,由a值不变即可找出结论.【详解】∵抛物线y=(x-1)1+1的顶点坐标为(1,1),抛物线y=x1的顶点坐标为(0,0),∴将抛物线y=x1先向右平移1个单位长度,再向上平移1个单位长度即可得出抛物线y=(x-1)1+1.故选:A.【点睛】本题考查了二次函数图象与几何变换,通过平移顶点找出结论是解题的关键.2、B【分析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于2并且小于1.【详解】解:A.某一事件发生的可能性非常大也是是随机事件,故不正确;B.2222年1月27日杭州会下雪是随机事件,正确;C.概率很小的事情可能发生,故不正确;D、投掷一枚质地均匀的硬币1222次,正面朝上的次数大约是522次,故不正确;故选:B.【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:2≤p≤1,其中必然发生的事件的概率P(A)=1;不可能发生事件的概率P(A)=2;随机事件,发生的概率大于2并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于2.3、C【分析】根据比例的性质得出再代入要求的式子,然后进行解答即可.【详解】解:∵,∴a=4b,c=4d,∴,故选C.【点睛】此题考查了比例的性质,熟练掌握比例线段的性质是解题的关键,是一道基础题.4、B【解析】试题解析:设此圆锥的底面半径为r,2πr=,r=10cm故选B.考点:弧长的计算.5、C【解析】将x的值代入函数解析式中求出函数值y即可判断.【详解】当x=-3时,y1=1,
当x=-1时,y2=3,
当x=1时,y3=-3,
∴y3<y1<y2
故选:C.【点睛】考查反比例函数图象上的点的特征,解题的关键是灵活运用所学知识解决问题.6、B【详解】解:因为每半年发放的资助金额的平均增长率为x,去年上半年发放给每个经济困难学生389元,去年下半年发放给每个经济困难学生389(1+x)元,则今年上半年发放给每个经济困难学生389(1+x)(1+x)=389(1+x)2元.据此,由题设今年上半年发放了1元,列出方程:389(1+x)2=1.故选B.7、A【分析】根据顶点式解析式写出顶点坐标即可.【详解】解:抛物线y=(x﹣1)2+3的顶点坐标是(1,3).故选:A.【点晴】本题考查了二次函数的性质,主要是利用顶点式解析式写顶点的方法,需熟记.8、A【解析】试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,∴这个斜坡的水平距离为:=10m,∴这个斜坡的坡度为:50:10=5:1.故选A.点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.9、C【分析】易证BE∥PG可得∠FPG=∠PFB,再由折叠的性质得∠FPB=∠FPG,所以∠FPB=∠PFB,根据等边对等角即可判断①;由矩形的性质得∠A=∠D=90°,AB=CD,用SAS即可判定全等,从而判断②;证明△ABE∽△DEC,得出比例式建立方程求出DE,从而判断③;证明△ECF∽△GCP,进而求出PC,即可得到sin∠PCB的值,从而判断④;证明△GEF∽△EAB,利用对应边成比例可得出结论,从而判断⑤.【详解】①∵四边形ABCD为矩形,顶点B的对应点是G,∴∠G=90°,即PG⊥CG,∵BE⊥CG∴BE∥PG∴∠FPG=∠PFB由折叠的性质可得∠FPB=∠FPG,∴∠FPB=∠PFB∴BP=BF,故①正确;②∵四边形ABCD为矩形,∴∠A=∠D=90°,AB=DC又∵点E是AD的中点,∴AE=DE在△AEB和△DEC中,∴△AEB≌△DEC(SAS),故②正确;③当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,即,解得AE=9或16,∵AE<DE,∴AE=9,DE=16,故③正确;④在Rt△ABE中,在Rt△CDE中,由①可知BE∥PG,∴△ECF∽△GCP∴设BP=BF=PG=a,则EF=BE-BF=15-a,由折叠性质可得CG=BC=25,∴,解得,在Rt△PBC中,∴sin∠PCB=,故④错误.⑤如图,连接FG,
∵∠GEF=∠PGC=90°,
∴∠GEF+∠PGC=180°,
∴BF∥PG
∵BF=PG,
∴四边形BPGF是菱形,
∴BP∥GF,GF=BP=9
∴∠GFE=∠ABE,
∴△GEF∽△EAB,
∴
∴BE•EF=AB•GF=12×9=108,故⑤正确;①②③⑤正确,故选C.【点睛】本题考查四边形综合问题,难度较大,需要熟练掌握全等三角形的判定,相似三角形的判定和性质,以及勾股定理和三角函数,综合运用所学几何知识是关键.10、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,不是中心对称图形;第二个图形是轴对称图形,是中心对称图形;第三个图形是轴对称图形,不是中心对称图形;第四个图形不是轴对称图形,是中心对称图形;既是中心对称图形又是轴对称图形的有1个,故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、80°或100°【解析】作出图形,证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分类讨论可得解.【详解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.点D的位置有两种情况:如图①,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE与Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如图②,∵AD′∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,综上所述,∠BCD=80°或100°,故答案为80°或100°.【点睛】本题考查了全等三角形的判定与性质,等腰梯形的判定与性质,本题关键是证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同时注意分类思想的应用.12、<【解析】分析:根据反比例函数的增减性即可得出答案.详解:∵图像在二、四象限,∴在每一个象限内,y随着x的增大而增大,∵1<2,∴.点睛:本题主要考查的是反比例函数的增减性,属于基础题型.对于反比例函数,当k>0时,在每一个象限内,y随着x的增大而减小;当k<0时,在每一个象限内,y随着x的增大而增大.13、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答.【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.14、【分析】根据判定三角形相似,然后利用相似三角形的性质求解.【详解】解:∵∴△AEB∽△DEC∴故答案为:【点睛】本题考查相似三角形的判定和性质,掌握相似三角形对应边成比例,难度不大.15、AB⊥CD【解析】解:需添加条件AB⊥DC,∵、、、分别为四边形中、、、中点,∴,∴,.∴四边形为平行四边形.∵E、H是AD、AC中点,
∴EH∥CD,
∵AB⊥DC,EF∥HG
∴EF⊥EH,
∴四边形EFGH是矩形.
故答案为:AB⊥DC.16、【分析】根据三角形的中位线定理得:A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,则△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.【详解】解:∵A2B2=A1B1、B2C2=B1C1、C2A2=C1A1,∴△A5B5C5的周长为△A1B1C1的周长的,∴△A5B5C5的周长为(7+4+5)×=1.故答案为1.【点睛】本题主要考查了三角形的中位线定理,灵活运用三角形的中位线定理并归纳规律是解答本题的关键.17、公分【分析】根据当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分得出AB=10,进而得出A1C=16,求出OA2=OA=6,过A2作A2D⊥OA1从而得出A2D=3即可.【详解】如图:可得(公分)∵AB=10(公分),∴(公分)过A2作A2D⊥OA1,∵(公分)∴钟面显示点分时,点距桌面的高度为:(公分).故答案为:19公分.【点睛】此题主要考查了解直角三角形以及钟面角,得出∠A2OA1=30°,进而得出A2D=3,是解决问题的关键.18、【分析】先证明△ABC为直角三角形,再根据正切的定义即可求解.【详解】根据网格的性质设网格的边长为1,则AB=,AC=,BC=∵AB2+AC2=BC2,∴△ABC为直角三角形,∠A=90°,∴=故填:.【点睛】此题主要考查正切的求解,解题的关键是证明三角形为直角三角形.三、解答题(共66分)19、(1)AD=;(2);(3)FG+EG是一个定值,为.【分析】(1)先由勾股定理求出BC的长,再由直角三角形斜边中线的性质可求出AD的长;(2)先证FG=CG=1,通过BD=CDBC=AD,求出BG的长,再证△BGE∽△BDA,利用相似三角形的性质可求出的值;(3)由(2)知FG=CG,再证EG=BG,即可证FG+EG=BC=2.【详解】(1)∵∠BAC=90°,且BD=CD,∴ADBC.∵BC2,∴AD2.故答案为:;(2)如图1.∵GF∥AD,∴∠CFG=∠CAD.∵BD=CDBC=AD,∴∠CAD=∠C,∴∠CFG=∠C,∴CG=FG=1,∴BG=21.∵AD∥GE,∴△BGE∽△BDA,∴;(3)如图2,随点G位置的改变,FG+EG是一个定值.理由如下:∵ADBC=BD,∴∠B=∠BAD.∵AD∥EG,∴∠BAD=∠E,∴∠B=∠E,∴EG=BG,由(2)知,GF=GC,∴EG+FG=BG+CG=BC=2,∴FG+EG是一个定值,为2.【点睛】本题考查了直角三角形的性质,相似三角形的判定与性质等,解题的关键是能够灵活运用相似三角形的判定与性质.20、(1)见解析;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【解析】(1)直接利用位似图形的性质得出对应点位置进而得出答案;(2)利用(1)中所画图形进而得出答案.【详解】(1)如图所示:△OA1B1,△OA2B2,即为所求;(2)点A1的坐标为:(﹣1,3),点A2的坐标为:(2,﹣6).【点睛】此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.21、(1)详见解析;(2)详见解析,A1(﹣3,3);(3)详见解析,A2(6,6).【解析】(1)根据A、B、C三点坐标画出图形即可;(2)作出A、B、C关于轴的对称点A1、B1、C1即可;(3)延长OC到C2,使得OC2=2OC,同法作出A2,B2即可;【详解】(1)△ABC如图所示;(2)△A1B1C1如图所示;A1(﹣3,3),(3)△A2B2C2如图所示;A2(6,6).故答案为(﹣3,3),(6,6).【点睛】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(1)y=﹣x2﹣x+1;(2)当h=3时,△AEF的面积最大,最大面积是.(3)存在,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).【分析】(1)利用待定系数法即可解决问题.(2)由题意可得点E的坐标为(0,h),点F的坐标为(,h),根据S△AEF=•OE•FE=•h•=﹣(h﹣3)2+.利用二次函数的性质即可解决问题.(3)存在.分两种情形情形,分别列出方程即可解决问题.【详解】解:如图:(1)∵抛物线y=ax2+bx+1经过点A(﹣3,0)和点B(2,0),∴,解得:.∴抛物线的解析式为y=﹣x2﹣x+1.(2)∵把x=0代入y=﹣x2﹣x+1,得y=1,∴点C的坐标为(0,1),设经过点A和点C的直线的解析式为y=mx+n,则,解得,∴经过点A和点C的直线的解析式为:y=2x+1,∵点E在直线y=h上,∴点E的坐标为(0,h),∴OE=h,∵点F在直线y=h上,∴点F的纵坐标为h,把y=h代入y=2x+1,得h=2x+1,解得x=,∴点F的坐标为(,h),∴EF=.∴S△AEF=•OE•FE=•h•=﹣(h﹣3)2+,∵﹣<0且0<h<1,∴当h=3时,△AEF的面积最大,最大面积是.(3)存在符合题意的直线y=h.∵B(2,0),C(0,1),∴直线BC的解析式为y=﹣3x+1,设D(m,﹣3m+1).①当BM=BD时,(m﹣2)2+(﹣3m+1)2=42,解得m=或(舍弃),∴D(,),此时h=.②当MD=BM时,(m+2)2+(﹣3m+1)2=42,解得m=或2(舍弃),∴D(,),此时h=.∵综上所述,存在这样的直线y=或y=,使△BDM是等腰三角形,当h=时,点D的坐标为(,);当h=时,点D的坐标为(,).【点睛】此题考查了待定系数法求函数的解析式、二次函数的性质、等腰三角形的性质、勾股定理一次函数的应用等知识,此题难度较大,注意掌握方程思想、分类讨论思想与数形结合思想的应用.23、(1)反比例函数的解析式为,一次函数的解析式为y=1x+4;(1)点B坐标为(﹣2,﹣1).【分析】(1)先过点A作AD⊥x轴,根据tan∠ACO=1,求得点A的坐标,进而根据待定系数法计算两个函数解析式;(1)先联立两个函数解析式,再通过解方程求得交点B的坐标即可.【详解】解:(1)过点A作AD⊥x轴,垂足为D.由A(n,6),C(﹣1,0)可得,OD=n,AD=6,CO=1∵tan∠ACO=1,∴=1,即,∴n=1,∴A(1,6).将A(1,6)代入反比例函数,得m=1×6=6,∴反比例函数的解析式为.将A(1,6),C(﹣1,0)代入一次函数y=kx+b,可得:,解得:,∴一次函数的解析式为y=1x+4;(1)由可得,,解得=1,=﹣2.∵当x=﹣2时,y=﹣1,∴点B坐标为(﹣2,﹣1).【点睛】本题考查反比例函数与一次函数的交点问题,利用数形结合思想解题是关键.24、(1)x1=,x2=-1;(2)x1=5,x2=-1.【分析】(1)根据一元二次方程的一般形式得出a、b、c的值,利用公式法x=即可得答案;(2)先把常数项移项,再把方程两边同时加上一次项系数一半的平方,即可得完全平方式,直接开平方即可得答案.【详解】(1)3x2﹣x﹣4=1∵a=3,b=-1,c=-4,∴∴x1=,x1=-1.(2)x2﹣4x﹣5=1x2﹣4x+4=5+4(x﹣2)2=9∴x-2=3或x-2=-3∴x1=5,x2=-1.【点睛】本题考查解一元二次方程,一元二次方程的常用解法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.25、(1)①y=x2﹣8x+3;②线段MQ的最大值为1.(2)m+n的值为定值.m+n=2.【分析】(1)①根据点B的坐标和二次函数图象的对称轴即可求出二次函数解析式;②设M(m,m2﹣8m+3),利用待定系数法求出直线BC的解析式,从而求出Q(m,﹣2m+3),即可求出MQ的长与m的函数关系式,然后利用二次函数求最值即可;(2)将B(2,0)代入二次函数解析式中,求出二次函数解析式即可求出点C的坐标,然后利用待定系数法求出直线BC的解析式,根据一次函数的性质设出直线MN的解析式,然后联立方程结合一元二次方程根与系数的关系即可得出结论.【详解】(1)①由题意,解得,∴二次函数的解析式为y=x2﹣8x+3.②如图1中,设M(m,m2﹣8m+3),∵B(2,0),C(0,3),∴直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 活动项目管理培训
- 津南岗位培训介绍
- 2024-2025学年山东省部分学校高二下学期5月联考历史试题(A卷)(解析版)
- 2026年城市垃圾处理与资源化利用试题库
- 2026年电子商务师专业能力测试题目
- 2026年外语学习试题英语口语高级测试题库及答案
- 2026年职场沟通技巧与礼仪认证题库
- 2026年农业科技试题现代农业技术与种植管理试题
- 2026年证券投资顾问资格认证考试题库
- 2026年计算机系统维护系统管理与故障排除题集
- 专业律师服务合同书样本
- 反诈宣传讲座课件
- GB/T 6003.2-2024试验筛技术要求和检验第2部分:金属穿孔板试验筛
- DB32T 4398-2022《建筑物掏土纠偏技术标准》
- (精确版)消防工程施工进度表
- 保险公司资产负债表、利润表、现金流量表和所有者权益变动表格式
- 电磁流量说明书
- XX少儿棋院加盟协议
- 五年级数学应用题专题训练50题
- 2021年四川省资阳市中考数学试卷
- 高处作业安全培训课件
评论
0/150
提交评论