2024年中考数学真题分类汇编(全国)(第一期)专题20 多边形与平行四边形(30题)(解析版)_第1页
2024年中考数学真题分类汇编(全国)(第一期)专题20 多边形与平行四边形(30题)(解析版)_第2页
2024年中考数学真题分类汇编(全国)(第一期)专题20 多边形与平行四边形(30题)(解析版)_第3页
2024年中考数学真题分类汇编(全国)(第一期)专题20 多边形与平行四边形(30题)(解析版)_第4页
2024年中考数学真题分类汇编(全国)(第一期)专题20 多边形与平行四边形(30题)(解析版)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题20多边形与平行四边形(30题)一、单选题1.(2024·贵州·中考真题)如图,的对角线与相交于点O,则下列结论一定正确的是(

)A. B. C. D.【答案】B【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵是平行四边形,∴,故选B.2.(2024·云南·中考真题)一个七边形的内角和等于(

)A. B. C. D.【答案】B【分析】本题考查多边形的内角和,根据边形的内角和为求解,即可解题.【详解】解:一个七边形的内角和等于,故选:B.3.(2024·河北·中考真题)直线l与正六边形的边分别相交于点M,N,如图所示,则(

)A. B. C. D.【答案】B【分析】本题考查了多边形的内角和,正多边形的每个内角,邻补角,熟练掌握知识点是解决本题的关键.先求出正六边形的每个内角为,再根据六边形的内角和为即可求解的度数,最后根据邻补角的意义即可求解.【详解】解:正六边形每个内角为:,而六边形的内角和也为,∴,∴,∵,∴,故选:B.4.(2024·湖南·中考真题)下列命题中,正确的是(

)A.两点之间,线段最短 B.菱形的对角线相等C.正五边形的外角和为 D.直角三角形是轴对称图形【答案】A【分析】本题考查了命题与定理的知识,多边形外角性质,菱形性质及轴对称图形的特点,解题的关键是掌握这些基础知识点.【详解】解:A、两点之间,线段最短,正确,是真命题,符合题意;B、菱形的对角线互相垂直,不一定相等,选项错误,是假命题,不符合题意;C、正五边形的外角和为,选项错误,是假命题,不符合题意;D、直角三角形不一定是轴对称图形,只有等腰直角三角形是轴对称图形,选项错误,是假命题,不符合题意;故选:A.5.(2024·四川眉山·中考真题)如图,在中,点是的中点,过点,下列结论:①;②;③;④,其中正确结论的个数为(

)A.1个 B.2个 C.3个 D.4个【答案】C【分析】本题主要考查平行四边形的性质,根据平行四边形的对边平行,对角线互相平分,对角相等等性质进行判断即可【详解】解:四边形是平行四边形,,,,故①③正确,,,点是的中点,,又,,,,,,故②不正确,,,,即,故④正确,综上所述,正确结论的个数为3个,故选:C.6.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则的大小为()A. B. C. D.【答案】D【分析】本题考查了多边形内角与外角,正多边形的内角和,熟练掌握正多边形的内角和公式是解题的关键.根据正五边形的内角和公式和邻补角的性质即可得到结论.【详解】解:,故选:D.7.(2024·四川德阳·中考真题)已知,正六边形的面积为,则正六边形的边长为(

)A.1 B. C.2 D.4【答案】C【分析】本题考查正六边形的性质,正三角形的性质,设出边长去表示正三角形面积和正六边形面积即可.【详解】解:如图:根据多边形的内角和定理可求出正六边形的一个内角为,故正六边形是由6个正三角形构成的,过点作垂足是,设正六边形的边长为,即在正三角形中,∵,∴,在中,一个正三角形的面积为:,正六边形的面积为:,∴,解得:,故选:C.8.(2024·山东·中考真题)如图,已知,,是正边形的三条边,在同一平面内,以为边在该正边形的外部作正方形.若,则的值为(

)A.12 B.10 C.8 D.6【答案】A【分析】本题考查的是正多边形的性质,正多边形的外角和,先求解正多边形的1个内角度数,得到正多边形的1个外角度数,再结合外角和可得答案.【详解】解:∵正方形,∴,∵,∴,∴正边形的一个外角为,∴的值为;故选A9.(2024·内蒙古赤峰·中考真题)如图,是正边形纸片的一部分,其中是正边形两条边的一部分,若所在的直线相交形成的锐角为,则的值是()A. B. C. D.【答案】B【分析】本题考查了正多边形,求出正多边形的每个外角度数,再用外角和除以外角度数即可求解,掌握正多边形的性质是解题的关键.【详解】解:如图,直线相交于点,则,∵正多边形的每个内角相等,∴正多边形的每个外角也相等,∴,∴,故选:.10.(2024·浙江·中考真题)如图,在中,相交于点O,.过点A作的垂线交于点E,记长为x,长为y.当x,y的值发生变化时,下列代数式的值不变的是(

)A. B. C. D.【答案】C【分析】此题考查了平行四边形的性质、全等三角形的判定和性质、勾股定理等知识,过点D作交的延长线于点F,证明,得到,由勾股定理可得,,,则,整理后即可得到答案.【详解】解:过点D作交的延长线于点F,∵的垂线交于点E,∴,∵四边形是平行四边形,∴,∴,∴∴,由勾股定理可得,,,∴,∴∴即,解得,∴当x,y的值发生变化时,代数式的值不变的是,故选:C11.(2024·河北·中考真题)下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,中,,平分的外角,点是的中点,连接并延长交于点,连接.求证:四边形是平行四边形.证明:∵,∴.∵,,,∴①______.又∵,,∴(②______).∴.∴四边形是平行四边形.若以上解答过程正确,①,②应分别为(

)A., B.,C., D.,【答案】D【分析】本题考查平行四边形的判定,全等三角形的判定与性质,根据等边对等角得,根据三角形外角的性质及角平分线的定义可得,证明,得到,再结合中点的定义得出,即可得证.解题的关键是掌握:对角线互相平分的四边形是平行四边形.【详解】证明:∵,∴.∵,,,∴①.又∵,,∴(②).∴.∴四边形是平行四边形.故选:D.12.(2024·四川遂宁·中考真题)佩佩在“黄娥古镇”研学时学习扎染技术,得到了一个内角和为的正多边形图案,这个正多边形的每个外角为(

)A. B. C. D.【答案】C【分析】本题考查了正多边形的外角,设这个正多边形的边数为,先根据内角和求出正多边形的边数,再用外角和除以边数即可求解,掌握正多边形的性质是解题的关键.【详解】解:设这个正多边形的边数为,则,∴,∴这个正多边形的每个外角为,故选:.二、填空题13.(2023·江苏宿迁·中考真题)凸七边形的内角和是度.【答案】900【分析】本题主要考查了多边形内角和定理.应用多边形的内角和公式计算即可.【详解】解:七边形的内角和,故答案为:900.14.(2024·青海·中考真题)正十边形一个外角的度数是.【答案】/36度【分析】本题考查正多边形的外角.根据正n多边形的外角公式求解即可.【详解】解:正十边形的一个外角的大小是,故答案为:.15.(2024·甘肃临夏·中考真题)“香渡栏干屈曲,红妆映、薄绮疏棂.”图1窗棂的外边框为正六边形(如图2),则该正六边形的每个内角为.

【答案】120【分析】本题考查多边形内角和,正多边形的性质.掌握n边形内角和为和正多边形的每个内角都相等是解题关键.根据多边形内角和公式求出正六边形的内角和为,再除以6即可.【详解】解:∵正六边形的内角和为,∴正六边形的每个内角为.故答案为:120.16.(2024·内蒙古包头·中考真题)已知一个n边形的内角和是,则.【答案】7【分析】本题考查根据多边形的内角和计算公式求多边形的边数,多边形的内角和可以表示成,依此列方程可求解.【详解】解:根据题意,得,解得.故答案为:717.(2024·广东广州·中考真题)如图,中,,点在的延长线上,,若平分,则.【答案】5【分析】本题考查了平行四边形的性质,等腰三角形的判定和性质,掌握平行四边形的性质是解题关键.由平行四边形的性质可知,,,进而得出,再由等角对等边的性质,得到,即可求出的长.【详解】解:在中,,,,,平分,,,,,故答案为:5.18.(2024·山东威海·中考真题)如图,在正六边形中,,,垂足为点I.若,则.【答案】/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为,即,则可求得的度数,根据平行线的性质可求得的度数,进而可求出的度数,再根据三角形内角和定理即可求出的度数.【详解】解:∵正六边形的内角和,每个内角为:,,,,,,,,,,.故答案为:.19.(2024·四川广元·中考真题)点F是正五边形边的中点,连接并延长与延长线交于点G,则的度数为.

【答案】/18度【分析】连接,,根据正多边形的性质可证,得到,进而得到是的垂直平分线,即,根据多边形的内角和公式可求出每个内角的度数,进而得到,再根据三角形的内角和定理即可解答.【详解】解:连接,,

∵五边形是正五边形,∴,∴,∴,∵点F是的中点,∴是的垂直平分线,∴,∵在正五边形中,,∴,∴.故答案为:【点睛】本题考查正多边形的性质,内角,全等三角形的判定及性质,垂直平分线的判定,三角形的内角和定理,正确作出辅助线,综合运用相关知识是解题的关键.20.(2024·四川广安·中考真题)如图,在中,,,,点为直线上一动点,则的最小值为.【答案】【分析】如图,作关于直线的对称点,连接交于,则,,,当重合时,最小,最小值为,再进一步结合勾股定理求解即可.【详解】解:如图,作关于直线的对称点,连接交于,则,,,∴当重合时,最小,最小值为,∵,,在中,∴,,∴,,∵,∴,故答案为:【点睛】此题考查了平行四边形的性质,勾股定理,轴对称的性质,求最小值问题,正确理解各性质及掌握各知识点是解题的关键.21.(2024·山东烟台·中考真题)如图,在边长为6的正六边形中,以点F为圆心,以的长为半径作,剪下图中阴影部分做一个圆锥的侧面,则这个圆锥的底面半径为.【答案】【分析】本题考查正多边形的性质,求圆锥的底面半径,先求出正六边形的一个内角的度数,进而求出扇形的圆心角的度数,过点作,求出的长,再利用圆锥底面圆的周长等于扇形的弧长,进行求解即可.【详解】解:∵正六边形,∴,,∴,,∴,过点作于点,则:,设圆锥的底面圆的半径为,则:,∴;故答案为:.三、解答题22.(2024·四川泸州·中考真题)如图,在中,E,F是对角线上的点,且.求证:.【答案】证明见解析【分析】本题主要考查了平行四边形的性质,全等三角形的性质与判定,先由平行四边形的性质得到,则,再证明,即可证明.【详解】证明:∵四边形是平行四边形,∴,∴,又∵,∴,∴.23.(2024·浙江·中考真题)尺规作图问题:如图1,点E是边上一点(不包含A,D),连接.用尺规作,F是边上一点.小明:如图2.以C为圆心,长为半径作弧,交于点F,连接,则.小丽:以点A为圆心,长为半径作弧,交于点F,连接,则.小明:小丽,你的作法有问题,小丽:哦……我明白了!(1)证明;(2)指出小丽作法中存在的问题.【答案】(1)见详解(2)以点A为圆心,长为半径作弧,与可能有两个交点,故存在问题【分析】本题主要考查了平行四边形的判定与性质,(1)根据小明的作图方法证明即可;(2)以点A为圆心,长为半径作弧,与可能有两个交点,据此作答即可.【详解】(1)∵,∴,又根据作图可知:,∴四边形是平行四边形,∴;(2)原因:以点A为圆心,长为半径作弧,与可能有两个交点,故无法确定F的位置,故小丽的作法存在问题.24.(2024·吉林·中考真题)如图,在中,点O是的中点,连接并延长,交的延长线于点E,求证:.【答案】证明见解析【分析】本题主要考查了全等三角形的性质与判定,平行四边形的性质,先根据平行四边形对边平行推出,再由线段中点的定义得到,据此可证明,进而可证明.【详解】证明:∵四边形是平行四边形,∴,∴,∵点O是的中点,∴,∴,∴.25.(2024·江西·中考真题)追本溯源:题(1)来自于课本中的习题,请你完成解答,提炼方法并完成题(2).(1)如图1,在中,平分,交于点D,过点D作的平行线,交于点E,请判断的形状,并说明理由.方法应用:(2)如图2,在中,平分,交边于点E,过点A作交的延长线于点F,交于点G.①图中一定是等腰三角形的有(

)A.3个B.4个C.5个D.6个②已知,,求的长.【答案】(1)是等腰三角形;理由见解析;(2)①B;②.【分析】本题考查了平行四边形的性质和等腰三角形的判定和性质等知识,熟练掌握平行四边形的性质和等腰三角形的判定是解题的关键;(1)利用角平分线的定义得到,利用平行线的性质得到,推出,再等角对等边即可证明是等腰三角形;(2)①同(1)利用等腰三角形的判定和性质可以得到四个等腰三角形;②由①得,利用平行四边形的性质即可求解.【详解】解:(1)是等腰三角形;理由如下:∵平分,∴,∵,∴,∴,∴,∴是等腰三角形;(2)①∵中,∴,,同(1),∴,∵,∴,∵,,∴,,∵,∴,,,∴,,,即、、、是等腰三角形;共有四个,故选:B.②∵中,,,∴,,由①得,∴.26.(2024·安徽·中考真题)如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系,格点(网格线的交点)A、B,C、D的坐标分别为,,,.

(1)以点D为旋转中心,将旋转得到,画出;(2)直接写出以B,,,C为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E,使得射线平分,写出点E的坐标.【答案】(1)见详解(2)40(3)(答案不唯一)【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A,B,C分别绕点D旋转得到对应点,即可得出.(2)连接,,证明四边形是平行四边形,利用平行四边形的性质以及网格求出面积即可.(3)根据网格信息可得出,,即可得出是等腰三角形,根据三线合一的性质即可求出点E的坐标.【详解】(1)解:如下图所示:

(2)连接,,∵点B与,点C与分别关于点D成中心对称,∴,,∴四边形是平行四边形,∴.(3)∵根据网格信息可得出,,∴是等腰三角形,∴也是线段的垂直平分线,∵B,C的坐标分别为,,∴点,即.(答案不唯一)27.(2024·湖南·中考真题)如图,在四边形中,,点E在边上,.请从“①;②,”这两组条件中任选一组作为已知条件,填在横线上(填序号),再解决下列问题:(1)求证:四边形为平行四边形;(2)若,,,求线段的长.【答案】(1)①或②,证明见解析;(2)6【分析】题目主要考查平行四边形的判定和性质,勾股定理解三角形,理解题意,熟练掌握平行四边形的判定和性质是解题关键.(1)选择①或②,利用平行四边形的判定证明即可;(2)根据平行四边形的性质得出,再由勾股定理即可求解.【详解】(1)解:选择①,证明:∵,∴,∵,∴四边形为平行四边形;选择②,证明:∵,,∴,∵,∴四边形为平行四边形;(2)解:由(1)得,∵,,∴.28.(2024·湖北武汉·中考真题)如图,在中,点,分别在边,上,.(1)求证:;(2)连接.请添加一个与线段相关的条件,使四边形是平行四边形.(不需要说明理由)【答案】(1)见解析(2)添加(答案不唯一)【分析】本题考查了平行四边形的性质与判定,全等三角形的判定;(1)根据平行四边形的性质得出,,结合已知条件可得,即可证明;(2)添加,依据一组对边平行且相等的四边形是平行四边形,即可求解.【详解】(1)证明:∵四边形是平行四边形,∴,,,∵,∴即,在与中,,∴;(2)添加(答案不唯一)如图所示,连接.∵四边形是平行四边形,∴,即,当时,四边形是平行四边形.29.(2024·内蒙古赤峰·中考真题)如图,在中,D是中点.(1)求作:的垂直平分线l(要求:尺规作图,不写作法,保留作图痕迹);(2)若l交于点E,连接并延长至点F,使,连接.补全图形,并证明四边形是平行四边形.【答案】(1)见解析(2)见解析【分析】本题考查

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论