版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.(2011?德州)一个平面封闭图形内(含边界)任意两点距离的最大值称为该图形的“直径”,封闭图形的周长与直径之比称为图形的“周率”,下面四个平面图形(依次为正三角形、正方形、正六边形、圆)的周率从左到右依次记为a1,a2,a3,a4,则下列关系中正确的是()A.a4>a2>a1 B.a4>a3>a2C.a1>a2>a3 D.a2>a3>a42.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是()A.方差 B.平均数 C.众数 D.中位数3.据路透社报道,中国华为技术有限公司推出新的服务器芯片组,此举正值中国努力提高芯片制造能力,并减少对进口芯片的严重依赖.华为技术部门还表示,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占有面积.其中0.00000065用科学记数法表示为()A. B. C. D.4.某校进行体操队列训练,原有8行10列,后增加40人,使得队伍增加的行数、列数相同,你知道增加了多少行或多少列吗?设增加了行或列,则列方程得()A.(8﹣)(10﹣)=8×10﹣40 B.(8﹣)(10﹣)=8×10+40C.(8+)(10+)=8×10﹣40 D.(8+)(10+)=8×10+405.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70° B.110° C.120° D.140°6.如图,在中,,,,点为上任意一点,连结,以,为邻边作平行四边形,连结,则的最小值为()A. B. C. D.7.在一个不透明的布袋中装有60个白球和若干个黑球,除颜色外其他都相同,小红每次摸出一个球并放回,通过多次试验后发现,摸到黑球的频率稳定在0.6左右,则布袋中黑球的个数可能有()A.24 B.36 C.40 D.908.下列四个点,在反比例函数y=图象上的是(
)A.(1,-6) B.(2,4) C.(3,-2) D.(-6,-1)9.在ABC中,∠C=90°,AB=5,BC=4,以A为圆心,以3为半径画圆,则点C与⊙A的位置关系是()A.在⊙A外 B.在⊙A上 C.在⊙A内 D.不能确定10.二次函数的图象如图所示,其对称轴为,有下列结论:①;②;③;④对任意的实数,都有,其中正确的是()A.①② B.①④ C.②③ D.②④11.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A. B. C. D.12.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.30二、填空题(每题4分,共24分)13.抛物线y=(x﹣1)2﹣2与y轴的交点坐标是_____.14.如图,已知一次函数y=kx-4的图象与x轴、y轴分别交于A、B两点,与反比例函数在第一象限内的图象交于点C,且A为BC的中点,则k=________.15.已知二次函数(),与的部分对应值如下表所示:-10123461-2-3-2下面有四个论断:①抛物线()的顶点为;②;③关于的方程的解为,;④当时,的值为正,其中正确的有_______.16.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______.17.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC.若△ABC的面积为1,则△GEC的面积为____________.18.若关于x的一元二次方程有实数根,则m的取值范围是___________.三、解答题(共78分)19.(8分)如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.20.(8分)若一个三位数的百位上的数字减去十位上的数字等于其个位上的数字,则称这个三位数为“差数”,同时,如果百位上的数字为、十位上的数字为,三位数是“差数”,我们就记:,其中,,.例如三位数1.∵,∴1是“差数”,∴.(1)已知一个三位数的百位上的数字是6,若是“差数”,,求的值;(2)求出小于300的所有“差数”的和,若这个和为,请判断是不是“差数”,若是,请求出;若不是,请说明理由.21.(8分)已知,如图,在△ABC中,∠C=90°,点D是AB外一点,过点D分别作边AB、BC的垂线,垂足分别为点E、F,DF与AB交于点H,延长DE交BC于点G.求证:△DFG∽△BCA22.(10分)已知矩形的周长为1.(1)当该矩形的面积为200时,求它的边长;(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长.23.(10分)(2015德阳)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.24.(10分)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件.(1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x的之间的函数关系式,并注明x的取值范围;(2)每件小商品销售价是多少元时,商店每天销售这种小商品的利润最大;最大利润是多少.(注:销售利润=销售收入-购进成本)25.(12分)已知抛物线的图象经过点(﹣1,0),点(3,0);(1)求抛物线函数解析式;(2)求函数的顶点坐标.26.如图,海上有A、B、C三座小岛,小岛B在岛A的正北方向,距离为121海里,小岛C分别位于岛B的南偏东53°方向,位于岛A的北偏东27°方向,求小岛B和小岛C之间的距离.(参考数据:sin27°≈,cos27°≈,tan27°≈,sin53°≈,cos53°≈,tan53°≈)
参考答案一、选择题(每题4分,共48分)1、B【解析】试题解析:设等边三角形的边长是a,则等边三角形的周率a1==3设正方形的边长是x,由勾股定理得:对角线是x,则正方形的周率是a1==1≈1.818,设正六边形的边长是b,过F作FQ∥AB交BE于Q,得到平行四边形ABQF和等边三角形EFQ,直径是b+b=1b,∴正六边形的周率是a3==3,圆的周率是a4==π,∴a4>a3>a1.故选B.考点:1.正多边形和圆;1.等边三角形的判定与性质;3.多边形内角与外角;4.平行四边形的判定与性质.2、A【分析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差.【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差故选A考点:方差3、B【分析】把一个数表示成的形式,其中,n是整数,这种记数方法叫做科学记数法,根据科学记数法的要求即可解答.【详解】0.00000065=,故选:B.【点睛】此题考察科学记数法,注意n的值的确定方法,当原数小于1时,n是负整数,整数等于原数左起第一个非零数字前0的个数,按此方法即可正确求解.4、D【解析】增加了行或列,现在是行,列,所以(8+)(10+)=8×10+40.5、D【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【详解】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选D.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半6、A【分析】设PQ与AC交于点O,作⊥于,首先求出,当P与重合时,PQ的值最小,PQ的最小值=2.【详解】设与AC交于点O,作⊥于,如图所示:
在Rt△ABC中,∠BAC=90,∠ACB=45,
∴,∵四边形PAQC是平行四边形,
∴,∵⊥,∠ACB=45,∴,当与重合时,OP的值最小,则PQ的值最小,
∴PQ的最小值故选:A.【点睛】本题考查了勾股定理的运用、平行四边形的性质以及垂线段最短的性质,利用垂线段最短求线段的最小值是解题的关键.7、D【分析】设袋中有黑球x个,根据概率的定义列出方程即可求解.【详解】设袋中有黑球x个,由题意得:=0.6,解得:x=90,经检验,x=90是分式方程的解,则布袋中黑球的个数可能有90个.故选D.【点睛】此题主要考查概率的计算,解题的关键是根据题意设出未知数列方程求解.8、D【解析】由可得xy=6,故选D.9、B【分析】根据勾股定理求出AC的值,根据点与圆的位关系特点,判断即可.【详解】解:由勾股定理得:∵AC=半径=3,∴点C与⊙A的位置关系是:点C在⊙A上,故选:B.【点睛】本题考查了点与圆的位置关系定理和勾股定理等知识点的应用,点与圆(圆的半径是r,点到圆心的距离是d)的位置关系有3种:d=r时,点在圆上;d<r点在圆内;d>r点在圆外.掌握以上知识是解题的关键.10、B【分析】根据二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系逐个判断即可.【详解】抛物线的开口向下对称轴为,异号,则抛物线与y轴的交点在y轴的上方,则①正确由图象可知,时,,即则,②错误由对称性可知,和的函数值相等则时,,即,③错误可化为关于m的一元二次方程的根的判别式则二次函数的图象特征:抛物线的开口向下,与x轴只有一个交点因此,,即,从而④正确综上,正确的是①④故选:B.【点睛】本题考查了二次函数的图象与性质(对称性、与x轴、y轴的交点)、二次函数与一元二次方程的关系,熟练掌握函数的图象与性质是解题关键.11、C【解析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【详解】解:当时,,即S与t是二次函数关系,有最小值,开口向上,当时,,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.【点睛】考查动点问题的函数过图象,解答本题的关键是明确题意,利用数形结合的思想解答.12、D【详解】试题解析:根据题意得=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.考点:利用频率估计概率.二、填空题(每题4分,共24分)13、(0,﹣1)【解析】将x=0代入y=(x﹣1)2﹣2,计算即可求得抛物线与y轴的交点坐标.【详解】解:将x=0代入y=(x﹣1)2﹣2,得y=﹣1,所以抛物线与y轴的交点坐标是(0,﹣1).故答案为:(0,﹣1).【点睛】本题考查了二次函数图象上点的坐标特征,根据y轴上点的横坐标为0求出交点的纵坐标是解题的关键.14、4【详解】把x=0代入y=kx-4,得y=-4,则B的坐标为(0,-4),∵A为BC的中点,∴C点的纵坐标为4,把y=4代入,得x=2,∴C点的坐标为(2,4),把C(2,4)的坐标代入y=kx-4,得2k-4=4,解得k=4,故答案为4.15、①③④【分析】根据表格,即可判断出抛物线的对称轴,从而得到顶点坐标,即可判断①;根据抛物线的对称性即可判断②;根据表格中函数值为-2时,对应的x的值,即可判断③;根据二次函数的增减性即可判断④.【详解】解:①根据表格可知:抛物线()的对称轴为x=2,∴抛物线()的顶点为,故①正确;②根据抛物线的对称性可知:当x=4和x=0时,对应的函数值相同,∴m=1,故②错误;③由表格可知:对于二次函数,当y=-2时,对应的x的值为1或3∴关于的方程的解为,,故③正确;④由表格可知:当x<2时,y随x的增大而减小∵,抛物线过(0,1)∴当时,>1>0∴当时,的值为正,故④正确.故答案为:①③④.【点睛】此题考查的是二次函数的图象及性质,掌握二次函数的对称性、顶点坐标与最值、二次函数与一元二次方程的关系和二次函数的增减性是解决此题的关键.16、【分析】根据速度=路程÷时间,即可得出y与x的函数关系式.【详解】解:∵速度=路程÷时间,∴故答案为:【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.17、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可.【详解】解:连接AG并延长交BC于点D,∴D为BC中点∴又∵∴∵G为重心∴∴∴,又∵∴.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18、【分析】根据根的判别式可得方程有实数根则,然后列出不等式计算即可.【详解】根据题意得:解得:故答案为:【点睛】本题考查的是一元二次方程的根的判别式,根据一元二次方程的根的情况确定与0的关系是关键.三、解答题(共78分)19、(1)y=﹣x2+2x+3;(2)存在,;(3)①;②Q点坐标为(0,)或(0,)或(0,1)或(0,3).【分析】(1)用待定系数法求解析式;(2)作PM⊥x轴于M,作PN⊥y轴于N,当∠POB=∠POC时,△POB≌△POC,设P(m,m),则m=﹣m2+2m+3,可求m;(3)分类讨论:①如图,当∠Q1AB=90°时,作AE⊥y轴于E,证△DAQ1∽△DOB,得,即;②当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°,证△BOQ2∽△DOB,得,;③当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,证△BOQ3∽△Q3EA,,即;【详解】解:(1)把A(1,4)代入y=kx+6,∴k=﹣2,∴y=﹣2x+6,由y=﹣2x+6=0,得x=3∴B(3,0).∵A为顶点∴设抛物线的解析为y=a(x﹣1)2+4,∴a=﹣1,∴y=﹣(x﹣1)2+4=﹣x2+2x+3(2)存在.当x=0时y=﹣x2+2x+3=3,∴C(0,3)∵OB=OC=3,OP=OP,∴当∠POB=∠POC时,△POB≌△POC,作PM⊥x轴于M,作PN⊥y轴于N,∴∠POM=∠PON=45°.∴PM=PN∴设P(m,m),则m=﹣m2+2m+3,∴m=,∵点P在第三象限,∴P(,).(3)①如图,当∠Q1AB=90°时,作AE⊥y轴于E,∴E(0,4)∵∠DAQ1=∠DOB=90°,∠ADQ1=∠BDO∴△DAQ1∽△DOB,∴,即,∴DQ1=,∴OQ1=,∴Q1(0,);②如图,当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠OQ2B=90°∴∠DBO=∠OQ2B∵∠DOB=∠BOQ2=90°∴△BOQ2∽△DOB,∴,∴,∴OQ2=,∴Q2(0,);③如图,当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,∴∠AQ3E+∠EAQ3=∠AQ3E+∠BQ3O=90°∴∠EAQ3=∠BQ3O∴△BOQ3∽△Q3EA,∴,即,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,∴Q3(0,1)或(0,3).综上,Q点坐标为(0,)或(0,)或(0,1)或(0,3).【点睛】考核知识点:二次函数,相似三角形.构造相似三角形,数形结合分类讨论是关键.20、(1);(2)小于300的“差数”有101,110,202,211,220,n是“差数”,【分析】(1)设三位数的十位上的数字是x,根据进行求解;(2)根据“差数”的定义列出小于300的所有“差数”,进而求解.【详解】解:(1)设三位数的十位上的数字是x,∴,解得,,∴个位上的数字为:,∴;(2)小于300的“差数”有101,110,202,211,220,∴,显然n是“差数”,.【点睛】本题是新定义问题,考查了解一元二次方程,理解新的定义是解题的关键.21、见解析【分析】通过角度转化,先求出∠D=∠B,然后根据∠C=∠DFG=90°,可证相似.【详解】∵DF⊥BC于F,∠C=90°∴∠DFG=∠C=90°又DE⊥AB于点E∴∠DGB+∠B=90°又∠DGB+∠D=90°∴∠B=∠D∴△DFG∽△BCA.【点睛】本题考查证相似,解题关键是通过角度转化,得出∠D=∠B.22、(1)矩形的边长为10和2;(2)这个矩形的面积S与其一边长x的关系式是S=-x2+30x;当矩形的面积取得最大值时,矩形是边长为15的正方形.【分析】(1)设矩形的一边长为,则矩形的另一边长为,根据矩形的面积为20列出相应的方程,从而可以求得矩形的边长;
(2)根据题意可以得到矩形的面积与一边长的函数关系,然后根据二次函数的性质可以求得矩形的最大面积,并求出矩形面积最大时它的边长.【详解】解:(1)设矩形的一边长为,则矩形的另一边长为,根据题意,得,解得,.答:矩形的边长为10和2.(2)设矩形的一边长为,面积为S,根据题意可得,,所以,当矩形的面积最大时,.答:这个矩形的面积与其一边长的关系式是S=-x2+30x,当矩形面积取得最大值时,矩形是边长为15的正方形.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,列出相应的方程以及函数关系式,利用二次函数的性质解答.23、(1)面料的单价为3元/米,里料的单价为2元/米;(2)①5;②5%.【分析】(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米,根据成本为1元列出一元一次方程,从而得出答案;(2)、设打折数为m,根据利润不低于4元列出不等式,从而得出m的值;(3)、设vip客户享受的降价率为x,根据题意列出分式方程,从而得出答案【详解】解:(1)、设里料的单价为x元/米,面料的单价为(2x+10)元/米.根据题意得:0.5x+1.2(2x+10)=1.解得:x=2.2x+10=2×2+10=3.答:面料的单价为3元/米,里料的单价为2元/米.(2)、设打折数为m.根据题意得:13×﹣1﹣14≥4.解得:m≥5.∴m的最小值为5.答:m的最小值为5.(3)、13×0.5=12元.设vip客户享受的降价率为x.根据题意得:,解得:x=0.05经检验x=0.05是原方程的解.答;vip客户享受的降价率为5%.【点睛】本题考查(1)、分式方程的应用;(2)、一元一次方程的应用;(3)、不等式的应用,正确理解题目中的等量关系是解题关键24、(1)y=-100x2+600x+5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 竹鞭墙纸施工方案(3篇)
- 福建麦当劳活动策划方案(3篇)
- 炒饭餐厅活动策划方案(3篇)
- 清淤上岸施工方案(3篇)
- 突起地标施工方案(3篇)
- 清远展厅施工方案(3篇)
- 阜阳涵管施工方案(3篇)
- 气象服务业务规范手册(标准版)
- 外墙涂料安全培训
- 2025年大学(食品科学与工程)食品营养学试题及答案
- 劲拓作业指导书
- 30以内加减法练习(每页100题A4纸)
- 社会实践-形考任务三-国开(CQ)-参考资料
- 卢氏县横涧壮沟铁矿矿山地质环境保护与土地复垦方案
- 医护人员形象礼仪培训
- 中国的“爱经”(一)-《天地阴阳交⊥欢大乐赋》
- 心房钠尿肽基因敲除小鼠的繁殖和鉴定
- 母婴护理职业道德课件
- 口腔颌面外科学(全)
- 安徽金轩科技有限公司 年产60万吨硫磺制酸项目环境影响报告书
- 魔鬼理论之k线秘笈图解课件
评论
0/150
提交评论