版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.已知二次函数(a≠0)的图象如图所示,则下列结论:①b<0,c>0;②a+b+c<0;③方程的两根之和大于0;④a﹣b+c<0,其中正确的个数是()A.4个 B.3个 C.2个 D.1个2.一块圆形宣传标志牌如图所示,点,,在上,垂直平分于点,现测得,,则圆形标志牌的半径为()A. B. C. D.3.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.54.在Rt△ABC中,∠C=90°,、、所对的边分别为a、b、c,如果a=3b,那么∠A的余切值为()A. B.3 C. D.5.如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(-1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB’,则点B的对应点B’的坐标是(
)A.(1,0) B.(,) C.(1,) D.(-1,)6.如图,将矩形沿对角线折叠,使落在处,交于,则下列结论不一定成立的是()A. B.C. D.7.在△ABC中,∠C=90°,sinA=,则tanB等于()A. B.C. D.8.抛物线的顶点坐标为A. B. C. D.9.从这七个数中随机抽取一个数记为,则的值是不等式组的解,但不是方程的实数解的概率为().A. B. C. D.10.如图,是由7个大小相同的小正方体堆砌而成的几何体,若从标有①、②、③、④的四个小正方体中取走一个后,余下几何体与原几何体的主视图相同,则取走的正方体是()A.① B.② C.③ D.④二、填空题(每小题3分,共24分)11.钟表分针的运动可看作是一种旋转现象,一只标准时钟的分针匀速旋转,经过15分钟旋转了______度.12.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为______________.13.小亮在投篮训练中,对多次投篮的数据进行记录.得到如下频数表:投篮次数20406080120160200投中次数1533496397128160投中的频率0.750.830.820.790.810.80.8估计小亮投一次篮,投中的概率是______.14.如图,四边形内接于,若,_______.15.如图,已知AB是⊙O的直径,弦CD与AB相交,若∠BCD=24°,则∠ABD的度数为___度.16.已知关于x的一元二次方程两根是分别α和β则m=_____,α+β=_____.17.从这九个自然数中,任取一个数是偶数的概率是____.18.如果,那么=_____.三、解答题(共66分)19.(10分)抛物线的图像与轴的一个交点为,另一交点为,与轴交于点,对称轴是直线.(1)求该二次函数的表达式及顶点坐标;(2)画出此二次函数的大致图象;利用图象回答:当取何值时,?(3)若点在抛物线的图像上,且点到轴距离小于3,则的取值范围为;20.(6分)某演出队要购买一批演出服,商店给出如下条件:如果一次性购买不超过10件,每件80元;如果一次性购买多于10件,每增加1件,每件服装降低2元,但每件服装不得低于50元,演出队一次性购买这种演出服花费1200元,请问此演出队购买了多少件这种演出服?21.(6分)如图,⊙O是△ABC的外接圆,PA是⊙O切线,PC交⊙O于点D.(1)求证:∠PAC=∠ABC;(2)若∠BAC=2∠ACB,∠BCD=90°,AB=,CD=2,求⊙O的半径.22.(8分)如图,AB∥CD,AC与BD的交点为E,∠ABE=∠ACB.(1)求证:△ABE∽△ACB;(2)如果AB=6,AE=4,求AC,CD的长.23.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形.如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.24.(8分)如图,已知A(-4,2)、B(n,-4)是一次函数的图象与反比例函数的图象的两个交点.(1)求此反比例函数和一次函数的解析式;(2)求△AOB的面积;25.(10分)在Rt△ABC中,∠C=90°,a=6,b=.解这个三角形.26.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?
参考答案一、选择题(每小题3分,共30分)1、B【解析】试题分析:∵抛物线开口向下,∴a<0,∵抛物线对称轴x>0,且抛物线与y轴交于正半轴,∴b>0,c>0,故①错误;由图象知,当x=1时,y<0,即a+b+c<0,故②正确,令方程的两根为、,由对称轴x>0,可知>0,即>0,故③正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:﹣1<x<0,∴当x=﹣1时,y=a﹣b+c<0,故④正确.故选B.考点:二次函数图象与系数的关系.2、B【分析】连结,,设半径为r,根据垂径定理得,在中,由勾股定理建立方程,解之即可求得答案.【详解】连结,,如图,设半径为,∵,,∴,点、、三点共线,∵,∴,在中,∵,,即,解得,故选B.【点睛】本题考查勾股定理,关键是利用垂径定理解答.3、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.4、A【分析】根据锐角三角函数的定义,直接得出cotA=,即可得出答案.【详解】解:在Rt△ABC中,∠C=90°,a=3b,∴;故选择:A.【点睛】此题主要考查了锐角三角函数的定义,熟练地应用锐角三角函数的定义是解决问题的关键.5、C【分析】根据A点的坐标,得出OA的长,根据平移的条件得出平移的距离,根据平移的性质进而得出答案.【详解】∵A(-1,0),∴OA=1,∵一个直角三角板的直角顶点与原点重合,现将该三角板向右平移使点A与点O重合,得到△OCB’,∴平移的距离为1个单位长度,∴则点B的对应点B’的坐标是(1,).故答案为:C.【点睛】此题考查坐标与图形变化,关键是根据平移的性质得出平移后坐标的特点.6、C【解析】分析:主要根据折叠前后角和边相等对各选项进行判断,即可选出正确答案.详解:A、BC=BC′,AD=BC,∴AD=BC′,所以A正确.B、∠CBD=∠EDB,∠CBD=∠EBD,∴∠EBD=∠EDB,所以B正确.D、∵sin∠ABE=,∵∠EBD=∠EDB∴BE=DE∴sin∠ABE=.由已知不能得到△ABE∽△CBD.故选C.点睛:本题可以采用排除法,证明A,B,D都正确,所以不正确的就是C,排除法也是数学中一种常用的解题方法.7、B【解析】法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B8、B【分析】利用顶点公式,进行计算【详解】顶点坐标为故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.9、B【分析】先解不等式,再解一元二次方程,利用概率公式得到概率【详解】解①得,,解②得,.∴.∵的值是不等式组的解,∴.方程,解得,.∵不是方程的解,∴或.∴满足条件的的值为,(个).∴概率为.故选.10、A【分析】根据题意得到原几何体的主视图,结合主视图选择.【详解】解:原几何体的主视图是:.视图中每一个闭合的线框都表示物体上的一个平面,左侧的图形只需要两个正方体叠加即可.故取走的正方体是①.故选A.【点睛】本题考查了简单组合体的三视图,中等难度,作出几何体的主视图是解题关键.二、填空题(每小题3分,共24分)11、90【解析】分针走一圈(360°)要1小时,则每分钟走360°÷60=6°,则15分钟旋转15×6°=90°.故答案为90.12、x1=-1,x2=1【分析】根据抛物线的轴对称性以及对称轴的位置,可得抛物线与x轴的另一个交点的横坐标,进而即可求解.【详解】∵二次函数的部分图象与x轴的交点的横坐标为1,对称轴为:直线x=1,∴抛物线与x轴的另一个交点的横坐标为-1,∴的解为:x1=-1,x2=1.故答案是:x1=-1,x2=1.【点睛】本题主要考查二次函数图象的轴对称性以及二次函数与一元二次方程的关系,根据抛物线的轴对称性,得到抛物线与x轴另一个交点的横坐标,是解题的关键.13、0.1【分析】由小亮每次投篮的投中的频率继而可估计出这名球员投一次篮投中的概率.【详解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的频率大都稳定在0.1左右,∴估计小亮投一次篮投中的概率是0.1,故答案为:0.1.【点睛】本题比较容易,考查了利用频率估计概率.大量反复试验下频率值即概率.概率=所求情况数与总情况数之比.14、【分析】根据圆内接四边形的对角互补,即可求得答案.【详解】∵四边形ABCD是⊙O的内接四边形,
∴.
故答案为:.【点睛】主要考查圆内接四边形的性质及圆周角定理.15、66【解析】连接AD,根据圆周角定理可求∠ADB=90°,由同弧所对圆周角相等可得∠DCB=∠DAB,即可求∠ABD的度数.【详解】解:连接AD,∵AB是直径,∴∠ADB=90°,∵∠BCD=24°,∴∠BAD=∠BCD=24°,∴∠ABD=66°,故答案为:66【点睛】本题考查了圆周角定理,根据圆周角定理可求∠ADB=90°是本题的关键.16、-21【分析】首先根据一元二次方程的概念求出m的值,然后根据根与系数的关系即可得出答案.【详解】∵是一元二次方程,,解得,.两根是分别α和β,,故答案为:-2,1.【点睛】本题主要考查一元二次方程,掌握一元二次方程的概念及根与系数的关系是解题的关键.17、【分析】由从1到9这九个自然数中任取一个,是偶数的有4种情况,直接利用概率公式求解即可求得答案.【详解】解:这九个自然数中任取一个有9种情况,其中是偶数的有4种情况,从1到9这九个自然数中任取一个,是偶数的概率是:.故答案为:.【点睛】此题考查了概率公式的应用.用到的知识点为:概率所求情况数与总情况数之比.18、【解析】试题解析:设a=2t,b=3t,故答案为:三、解答题(共66分)19、(1),;(2)见解析,或;(3)【分析】(1)根据图像对称轴是直线,得到,再将,代入解析式,得到关于a、b、c的方程组,即可求得系数,得到解析式,再求出顶点坐标即可;(2)根据特定点画出二次函数的大致图象,根据二次函数与不等式的关系,即可得到对应的x的取值范围.(3)求出当时,当时,y的值,即可求出的取值范围.【详解】(1)因为图像对称轴是直线,所以,将,代入解析式,得:由题知,解得,所以解析式为:;当时,,所以顶点坐标.(2)二次函数的大致图象:当或,.(3)当时,得,当时,得,所以y取值范围为,即的取值范围为.【点睛】本题考查了待定系数法的求解析式、二元一次方程与不等式的关系,本题难度不大,是二次函数中经常考查的类型.20、购买了20件这种服装【分析】根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可;【详解】解:设购买了件这种服装.,∵∴购买的演出服多于10件根据题意得出:,解得:,,当时,元元,符合题意;当时,元元,不合题意,舍去;故答案为:.答:购买了20件这种服装.【点睛】本题考查了一元二次方程的应用,解答本题的关键是根据题意找出等量关系列出方程.21、(1)见解析;(2)⊙O的半径为1【分析】(1)连接AO延长AO交⊙O于点E,连接EC.想办法证明:∠B+∠EAC=90°,∠PAC+∠EAC=90°即可解决问题;
(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.求出OM,根据CM2=OC2-OM2=CF2-FM2构建方程即可解决问题;【详解】(1)连接AO并延长交⊙O于点E,连接EC.∵AE是直径,∴∠ACE=90°,∴∠EAC+∠E=90°,∵∠B=∠E,∴∠B+∠EAC=90°,∵PA是切线,∴∠PAO=90°,∴∠PAC+∠EAC=90°,∴∠PAC=∠ABC.(2)连接BD,作OM⊥BC于M交⊙O于F,连接OC,CF.设⊙O的半径为x.∵∠BCD=90°,∴BD是⊙O的直径,∵OM⊥BC,∴BM=MC,,∵OB=OD,∴OM=CD=1,∵∠BAC=∠BDC=2∠ACB,,∴∠BDF=∠CDF,∴∠ACB=∠CDF,∴,∴AB=CF=2,∵CM2=OC2﹣OM2=CF2﹣FM2,∴x2﹣12=(2)2﹣(x﹣1)2,∴x=1或﹣2(舍),∴⊙O的半径为1.【点睛】本题考查切线的性质,垂径定理,圆周角定理推论,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用转化的思想思考问题.22、(1)详见解析;(2)AC=9,CD=.【分析】(1)根据相似三角形的判定证明即可;(2)利用相似三角形的性质解答即可.【详解】证明:(1)∵∠ABE=∠ACB,∠A=∠A,∴△ABE∽△ACB;(2)∵△ABE∽△ACB,∴,∴AB2=AC•AE,∵AB=6,AE=4,∴AC=,∵AB∥CD,∴△CDE∽△ABE,∴,∴.【点睛】此题考查相似三角形的判定和性质,关键是根据相似三角形的判定证明△ABE∽△ACB.23、(1)y=x+1;y=(2)证明见解析;(3)存在,D(8,1).【分析】(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1),BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.【详解】解:(1)∵点A与点B关于y轴对称,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=得m=8,∴反比例函数的解析式:y=把A(-4,0),P(4,2)代入y=kx+b得:,解得:,所以一次函数的解析式:y=x+1;(2)∵点A与点B关于y轴对称,∴OA=OB∵PB丄x轴于点B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴点C为线段AP的中点.(3)存在点D,使四边形BCPD为菱形∵点C为线段AP的中点,∴BC=,∴BC和PC是菱形的两条边由y=x+1,可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,分别连结PD、BD,∴点D(8,1),BP⊥CD∴PE=BE=1,∴CE=DE=4,∴PB与CD互相垂直平分,∴四边形BCPD为菱形.∴点D(8,1)即为所求.24、(1)y=-;y=-x-2;(2)6【分析】(1)先把点A(-4,2)代入,求得“m”的值得到反比例函数的解析式,再把点B(n,-4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年北京航空航天大学科学技术研究院聘用编科研助理F岗招聘备考题库参考答案详解
- 中国司法大数据研究院2026年招聘备考题库及参考答案详解
- 2025年遂宁市大数据中心遂宁数字经济研究院的招聘备考题库附答案详解
- 黑龙江公安警官职业学院《现代汉语》2025 学年第二学期期末试卷
- 清远市公安局公开招聘警务辅助人员200人备考题库及1套参考答案详解
- 2025吉林白城市镇赉县事业单位招聘(含专项招聘高校毕业生)附基层治理专干47人备考核心试题附答案解析
- 2025年中国社会科学院亚太与全球战略研究院公开招聘第一批专业技术人员备考题库完整答案详解
- 2025年北京协和医院变态(过敏)反应科合同制科研助理招聘备考题库及一套完整答案详解
- 2025年吉安市第十二中学面向社会公开招聘编外工作人员考试核心试题及答案解析
- 2025广西北海市海城区发展和改革局招聘编外人员1人备考考试试题及答案解析
- 2026成方金融信息技术服务有限公司校园招聘5人考试题库附答案
- 车辆租赁服务协议书
- 2025安徽安庆市公安机关招聘警务辅助人员418人备考笔试题库及答案解析
- 2024年广州市南沙区南沙街道社区专职招聘考试真题
- 2026年牡丹江大学单招职业技能考试题库新版
- 国家开放大学22517《社区工作》(统设课)期末终考题库
- 恶性胸腹腔积液病人护理
- 华为LTC流程管理培训
- 北师大版五年级数学上册 第五章 分数的意义 考点专项练习题(含解析)
- 2026年印刷公司供应链风险预案管理制度
- 2025年安防监控工程清包合同书
评论
0/150
提交评论