宁夏固原市西吉县2025届九上数学期末综合测试试题含解析_第1页
宁夏固原市西吉县2025届九上数学期末综合测试试题含解析_第2页
宁夏固原市西吉县2025届九上数学期末综合测试试题含解析_第3页
宁夏固原市西吉县2025届九上数学期末综合测试试题含解析_第4页
宁夏固原市西吉县2025届九上数学期末综合测试试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

宁夏固原市西吉县2025届九上数学期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,AD,BC相交于点O,AB∥CD.若AB=1,CD=2,则△ABO与△DCO的面积之比为A. B. C. D.2.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,对应锐角A,A′的正弦值的关系为()A.sinA=3sinA′B.sinA=sinA′C.3sinA=sinA′D.不能确定3.海南渔民从事海洋捕捞已有上千年历史,南海是海南渔民的“祖宗海”,目前海南共有约25万人从事渔业生产.这个数据用科学记数法表示为()A.2.5×106人 B.25×104人 C.2.5×104人 D.2.5×105人4.如图,一个半径为r(r<1)的圆形纸片在边长为6的正六边形内任意运动,则在该六边形内,这个圆形纸片不能接触到的部分的面积是()A.πr2 B.C. D.5.如图,AB为⊙O的直径,点C、D在⊙O上,若∠AOD=30°,则∠BCD的度数是()A.150° B.120° C.105° D.75°6.如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30° B.45°C.90° D.135°7.如图是二次函数图象的一部分,图象过点,对称轴为直线,给出四个结论:①;②;③若点、为函数图象上的两点,则;④关于的方程一定有两个不相等的实数根.其中,正确结论的是个数是()A.4 B.3 C.2 D.18.如图△ABC中,BE平分∠ABC,DE∥BC,若DE=2AD,AE=2,那么AC的长为()A.3 B.4 C.5 D.69.如图,AB是☉O的直径,点C,D在☉O上,且,OD绕着点O顺时针旋转,连结CD交直线AB于点E,当DE=OD时,的大小不可能为()A. B. C. D.10.关于反比例函数,下列说法正确的是()A.图象过(1,2)点 B.图象在第一、三象限C.当x>0时,y随x的增大而减小 D.当x<0时,y随x的增大而增大二、填空题(每小题3分,共24分)11.同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为___________.12.若代数式有意义,则的取值范围是____________.13.四边形为的内接四边形,为的直径,为延长线上一点,为的切线,若,则_________.若,则__________.14.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于.15.如图,有一张矩形纸片,长15cm,宽9cm,在它的四角各剪去一个同样的小正方形,然折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是48cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为_____.16.在国家政策的宏观调控下,某市的商品房成交均价由去年10月份的7000元/m2下降到12月份的5670元/m2,则11、12两月平均每月降价的百分率是_____.17.若圆锥的底面半径为3cm,高为4cm,则它的侧面展开图的面积为_____cm1.18.抛物线y=x2+2x与y轴的交点坐标是_____.三、解答题(共66分)19.(10分)(1)将如图①所示的△ABC绕点C旋转后,得到△CA'B'.请先画出变换后的图形,再写出下列结论正确的序号是.

①;②线段AB绕C点旋转180°后,得到线段A'B';③;④C是线段BB'的中点.在第(1)问的启发下解答下面问题:(2)如图②,在中,,D是BC的中点,射线DF交BA于E,交CA的延长线于F,请猜想∠F等于多少度时,BE=CF?(直接写出结果,不需证明)(3)如图③,在△ABC中,如果,而(2)中的其他条件不变,若BE=CF的结论仍然成立,那么∠BAC与∠F满足什么数量关系(等式表示)?并加以证明.20.(6分)小明家今年种植的草莓喜获丰收,采摘上市20天全部销售完,爸爸让他对今年的销售情况进行跟踪记录,小明利用所学的数学知识将记录情况绘成图象(所得图象均为线段),日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,草莓的销售价p(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示设第x天的日销售额为w(单位:元)(1)第11天的日销售额w为元;(2)观察图象,求当16≤x≤20时,日销售额w与上市时间x之间的函数关系式及w的最大值;(3)若上市第15天时,爸爸把当天能销售的草莓批发给了邻居马叔叔,批发价为每千克15元,马叔叔到市场按照当日的销售价p元千克将批发来的草莓全部售完,他在销售的过程中,草莓总质量损耗了2%.那么,马叔叔支付完来回车费20元后,当天能赚到多少元?21.(6分)如图1,△ABC中,AB=AC=4,∠BAC=,D是BC的中点.小明对图1进行了如下探究:在线段AD上任取一点E,连接EB.将线段EB绕点E逆时针旋转80°,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧.请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由.(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值.22.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作AB的垂线交AC的延长线于点F.(1)求证:;(2)过点C作CG⊥BF于G,若AB=5,BC=2,求CG,FG的长.23.(8分)如图,∆ABD内接于半径为5的⊙O,连结AO并延长交BD于点M,交圆⊙O于点C,过点A作AE//BD,交CD的延长线于点E,AB=AM.(1)求证:∆ABM∽∆ECA.(2)当CM=4OM时,求BM的长.(3)当CM=kOM时,设∆ADE的面积为,∆MCD的面积为,求的值(用含k的代数式表示).24.(8分)已知,求代数式的值.25.(10分)小王、小张和小梅打算各自随机选择本周六的上午或下午去高邮湖的湖上花海去踏青郊游.(1)小王和小张都在本周六上午去踏青郊游的概率为_______;(2)求他们三人在同一个半天去踏青郊游的概率.26.(10分)某网点尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,经过统计得到此商品单价在第x天(x为正整数)销售的相关信息,如表所示:销售量n(件)销售单价m(元/件)(1)请计算第几天该商品单价为25元/件?(2)求网店第几天销售额为792元?(3)求网店销售该商品30天里所获利润y(元)关于x(天)的函数关系式;这30天中第几天获得的利润最大?最大利润是多少?

参考答案一、选择题(每小题3分,共30分)1、B【解析】根据相似三角形的判定与性质即可求出答案.【详解】∵AB∥CD,∴△AOB∽△DOC,∵,∴,故选B.【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.2、B【解析】根据相似三角形的性质,可得∠A=∠A′,根据锐角三角函数的定义,可得答案.【详解】解:由Rt△ABC各边的长度都扩大3倍的Rt△A′B′C′,得

Rt△ABC∽Rt△A′B′C′,

∠A=∠A′,sinA=sinA′

故选:B.【点睛】本题考查了锐角三角函数的定义,利用相似三角形的性质得出∠A=∠A′是解题关键.3、D【分析】对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【详解】25万人=2.5×105人.故选D.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【分析】当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,根据六边形的性质得出,所以,再由锐角三角函数的定义求出BF的长,最后利用可得出答案.【详解】如图,当圆运动到正六边形的角上时,圆与两边的切点分别为E,F,连接OE,OB,OF,∵多边形是正六边形,∴,,∴圆形纸片不能接触到的部分的面积是故选:C.【点睛】本题主要考查正六边形和圆,掌握正六边形的性质和特殊角的三角函数值是解题的关键.5、C【解析】试题解析:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AOD=30°,∴∠ACD=15°,∴∠BCD=∠ACB+∠ACD=105°,故选C.6、C【分析】根据勾股定理求解.【详解】设小方格的边长为1,得,OC=,AO=,AC=4,∵OC2+AO2==16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°.故选C.【点睛】考点:勾股定理逆定理.7、C【分析】①根据抛物线开口方向、对称轴及与y轴交点情况可判断;②根据抛物线对称轴可判断;③根据点离对称轴的远近可判断;④根据抛物线与直线交点个数可判断.【详解】由图象可知:开口向下,故,

抛物线与y轴交点在x轴上方,故>0,

∵对称轴,即同号,

∴,

∴,故①正确;∵对称轴为,

∴,

∴,故②不正确;∵抛物线是轴对称图形,对称轴为,点关于对称轴为的对称点为当时,

此时y随的增大而减少,

∵30,

∴,故③错误;∵抛物线的顶点在第二象限,开口向下,与轴有两个交点,

∴抛物线与直线有两个交点,

∴关于的方程有两个不相等的实数根,所以④正确;综上:①④正确,共2个;故选:C.【点睛】本题考查二次函数的图象及性质;熟练掌握函数图象及性质,能够从函数图象获取信息,结合函数解析式进行求解是关键.8、D【分析】首先证明BD=DE=2AD,再由DE∥BC,可得,求出EC即可解决问题.【详解】解:∵DE∥BC,∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DEB=∠DBE,∴DB=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴,∴,∴EC=4,∴AC=AE+EC=2+4=6,故选:D.【点睛】此题考查平行线分线段成比例,由DE∥BC,可得,求出EC即可解决问题.9、C【分析】分三种情况求解即可:①当点D与点C在直径AB的异侧时;②当点D在劣弧BC上时;③当点D在劣弧AC上时.【详解】①如图,连接OC,设,则,,∵,,在中,,,∴,;②如图,连接OC,设,则,,,,在中,,,∴,;(3)如图,设,则,,,,由外角可知,,,,,故选C.【点睛】本题考查了圆的有关概念,旋转的性质,等腰三角形的性质,三角形外角的性质,以及分类讨论的数学思想,分类讨论是解答本题的关键.10、D【解析】试题分析:根据反比例函数y=(k≠0)的图象k>0时位于第一、三象限,在每个象限内,y随x的增大而减小;k<0时位于第二、四象限,在每个象限内,y随x的增大而增大;在不同象限内,y随x的增大而增大.可由k=-2<0,所以函数图象位于二四象限,在每一象限内y随x的增大而增大,图象是轴对称图象,故A、B、C错误.故选D.考点:反比例函数图象的性质二、填空题(每小题3分,共24分)11、【分析】首先根据题意画出图形,设出圆的半径,分别求出圆中内接正三角形、内接正四边形、内接正六边形的边长,即可得出答案.【详解】设圆的半径为r,如图①,过点O作于点C则如图②,如图③,为等边三角形∴同一个圆中内接正三角形、内接正四边形、内接正六边形的边长之比为故答案为【点睛】本题主要考查圆的半径与内接正三角形,正方形和正六边形的边长之间的关系,能够画出图形是解题的关键.12、x≥1且x≠1【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,即可求解.【详解】解:根据二次根式有意义,分式有意义得:x-1≥0且x-1≠0,

解得:x≥1且x≠1.

故答案为:x≥1且x≠1.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数,难度不大.13、【分析】连接OC,AC、过点A作AF⊥CE于点F,根据相似三角形的性质与判定,以及勾股定理即可求出答案.【详解】解:连接OC,

∵CE是⊙O的切线,

∴∠OCE=90°,

∵∠E=20°,

∴∠COD=70°,

∵OC=OD,∴∠ABC=180°-55°=125°,

连接AC,过点A做AF⊥CE交CE于点F,

设OC=OD=r,

∴OE=8+r,

在Rt△OEC中,

由勾股定理可知:(8+r)2=r2+122,

∴r=5,

∵OC∥AF

∴△OCE∽△AEF,故答案为:【点睛】本题考查圆的综合问题,涉及勾股定理,相似三角形的性质与判定,切线的性质等知识,需要学生灵活运用所学知识.14、45°【分析】连接AO、BO,先根据正方形的性质求得∠AOB的度数,再根据圆周角定理求解即可.【详解】连接AO、BO∵⊙O是正方形ABCD的外接圆∴∠AOB=90°∴∠APB=45°.【点睛】圆周角定理:同圆或等圆中,同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.15、(15﹣2x)(9﹣2x)=1.【分析】设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是1cm2,即可得出关于x的一元二次方程,此题得解.【详解】解:设剪去的小正方形边长是xcm,则纸盒底面的长为(15﹣2x)cm,宽为(9﹣2x)cm,根据题意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【点睛】此题主要考查一元二次方程的应用,解题的关键是根据题意找到等量关系进行列方程.16、10%【分析】设11、12两月平均每月降价的百分率是x,那么11月份的房价为7000(1−x),12月份的房价为7000(1−x)2,然后根据12月份的价格即可列出方程解决问题.【详解】解:设11、12两月平均每月降价的百分率是x,由题意,得:7000(1﹣x)2=5670,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).故答案为:10%.【点睛】本题是一道一元二次方程的应用题,与实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.17、15【分析】先根据勾股定理计算出母线长,然后利用圆锥的侧面积公式进行计算.【详解】∵圆锥的底面半径为3cm,高为4cm∴圆锥的母线长∴圆锥的侧面展开图的面积故填:.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18、(0,0)【解析】令x=0求出y的值,然后写出即可.【详解】令x=0,则y=0,所以,抛物线与y轴的交点坐标为(0,0).故答案为(0,0).【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握抛物线与坐标轴的交点的求解方法是解题的关键.三、解答题(共66分)19、(1)①②③④;(2);(3),证明见解析【分析】(1)通过旋转的性质可知①②③④正确;(2)可结合题意画出图形使BE=CF,然后通过测量得出猜想,再证明△BEF′是等边三角形即可证明;(3)结合(2)可进一步猜想,若∠F'=∠BED则可推出BE=CF,结合三角形外角的性质可知时∠F'=∠BED,依此证明即可.【详解】解:(1)如图①,根据旋转的性质,知①②④都是正确的,根据旋转的性质可得∠A′=∠A,∴A′B′∥AB,③正确,故答案为:①②③④.(2)∠F等于60°度时,BE=CF.

证明如下:∵D是BC的中点,∴BD=DC,如下图,将△CDF,绕点D旋转180°后,得到△BDF′,由旋转的性质可知,∠C=∠F′BC,CF=BF′∴CF∥BF′,∠F′=∠F=60°,

∴∠CAB+∠ABF′=180°,

∵∠BAC=120°,

∴∠ABF′=60°,∴∠F′EB=120°-∠ABF′-∠F′=60°,

∴△BEF′是等边三角形,

∴BE=BF′=CF.(3)数量关系:∠BAC=2∠F.证明如下:作△DBF'与△FCD关于点D成中心对称,如下图,则∠F'=∠F,FC=BF',∵∠BAC=2∠F,∠BAC=∠F+∠FEA,∴∠F=∠FEA,∴∠F'=∠F=∠BED=∠FEA,∴BE=CF.【点睛】本题考查旋转的性质,等边三角形的性质和判定,等腰三角形的性质和判定,三角形外角的性质.理解旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变是解决(1)的关键.(2)中能结合题意画出对应图形,正确猜想是解题关键;(3)中主要是要理解等腰三角形“等角对等边”.20、(1)1980;(2)w=﹣5(x﹣1)2+180,w有最大值是680元;(3)112元【分析】(1)当3≤x<16时,设p与x的关系式为p=kx+b,当x=11时,代入解析式求出p的值,由销售金额=单价×数量就可以求出结论;(2)根据两个图象求得两个一次函数解析式,进而根据销售问题的等量关系列出二次函数解析式即可;(3)当x=15时代入(2)的解析式求出p的值,再当x=15时代入(1)的解析式求出y的值,再由利润=销售总额−进价总额−车费就可以得出结论.【详解】解:(1)当3≤x≤16时设p与x之间的函数关系式为p=kx+b依题意得把(3,30),(16,17)代入,解得∴p=﹣x+33当x=11时,p=22所以90×22=1980答:第11天的日销售额w为1980元.故答案为1980;(2)当11≤x≤20时设y与x之间的函数关系式为y=k1x+b1,依题意得把(20,0),(11,90)代入得解得∴y=﹣10x+200当16≤x≤20时设p与x之间的函数关系式为:p=k2x+b2依题意得,把(16,17),(20,19)代入得解得k2=,b2=9:∴p=x+9w=py=(x+9)(﹣10x+200)=﹣5(x﹣1)2+1805∴当16≤x≤20时,w随x的增大而减小∴当x=16时,w有最大值是680元.(3)由(1)得当3≤x≤16时,p=﹣x+33当x=15时,p=﹣15+33=18元,y=﹣10×15+200=50千克利润为:50(1﹣2%)×18﹣50×15﹣20=112元答:当天能赚到112元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是根据题意分别列出一次函数与二次函数求解.21、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得,,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得∠BCF=∠BEF=10°,从而计算得,完成求解;(3)由(1)和(2)知,CF∥AB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小,从而完成求解.【详解】(1)∵将线段EB绕点E逆时针旋转80°,点B的对应点是点F∴,∴,即∵AB=AC=1,D是BC的中点∴,∴,∴,∴∴∴(2)如图,连接BE、EC、BF、EF由(1)可知:EB=EF=EC∴B,F,C三点共圆,点E为圆心∴∠BCF=∠BEF=10°∵,∴∴∴,(1)中的结论仍然成立(3)由(1)和(2)知,∴点F的运动路径在CF上如图,作AM⊥CF于点M∵∴点E在线段AD上运动时,点B旋转不到点M的位置∴故当点E与点A重合时,AF最小此时AF1=AB=AC=1,即AF的最小值为1.【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解.22、(1)见解析;(2)CF=,FG=,【分析】(1)连接AE,利用等腰三角形的三线合一的性质证明∠EAB=∠EAC即可解决问题.(2)证明△BCG∽△ABE,可得,由此求出CG,再利用平行线分线段成比例定理求出CF,利用勾股定理即可求出FG.【详解】(1)证明:连接AE.∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴∠EAB=∠EAC,∴.(2)解:∵BF⊥AB,CG⊥BF,AE⊥BC∴∠CGB=∠AEB=∠ABF=90°,∵∠CBG+∠ABC=90°,∠ABC+∠BAE=90°,∴∠CBG=∠BAE,∴△BCG∽△ABE,∴,∴,∴CG=2,∵CG∥AB,∴,∴,∴CF=,∴FG===.【点睛】此题主要考查圆与几何综合,解题的关键是熟知圆的基本性质、等腰三角形的性质、相似三角形的判定与性质.23、(1)证明见解析;(2);(3)【分析】(1)利用同弧所对的圆周角相等,以及平行线的性质得出角相等,再利用两角对应相等的两个三角形相似解题.(2)连接BC构造直角三角形,再过B作BF⊥AC,利用所得到的直角三角形,结合勾股定理解题.(3)过点M作出△MCD的高MG,再由,得出线段间的比例关系,从而可得出结果.【详解】解:(1)∵弧CD=弧CD,∴.∵,∴.∴∵弧AD=弧AD∴∴(2)连接BC,作,∵半径为5,∴.∵,∴,.∴.由图可知AC为直径,,得.,解得.在中,,则.∴.在中,.(3)当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论