河北保定曲阳县2025届九上数学期末复习检测模拟试题含解析_第1页
河北保定曲阳县2025届九上数学期末复习检测模拟试题含解析_第2页
河北保定曲阳县2025届九上数学期末复习检测模拟试题含解析_第3页
河北保定曲阳县2025届九上数学期末复习检测模拟试题含解析_第4页
河北保定曲阳县2025届九上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北保定曲阳县2025届九上数学期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,线段AB两个端点的坐标分别为A(6,6),B(8,2).以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),则端点C的坐标为()A.(3,1) B.(4,1) C.(3,3) D.(3,4)2.在70周年国庆阅兵式上有两辆阅兵车的车牌号如图所示(每辆阅兵车的车牌号含7位数字或字母),则“9”这个数字在这两辆车牌号中出现的概率为()A. B. C. D.3.已知二次函数和一次函数的图象如图所示,下面四个推断:①二次函数有最大值②二次函数的图象关于直线对称③当时,二次函数的值大于0④过动点且垂直于x轴的直线与的图象的交点分别为C,D,当点C位于点D上方时,m的取值范围是或,其中正确的有()A.1个 B.2个 C.3个 D.4个4.如图1所示的是山西大同北都桥的照片,桥上面的部分是以抛物线为模型设计而成的,从正面观察该桥的上面部分是一条抛物线,如图2,若,以所在直线为轴,抛物线的顶点在轴上建立平面直角坐标系,则此桥上半部分所在抛物线的解析式为()A. B.C. D.5.一元二次方程的解的情况是()A.无解 B.有两个不相等的实数根C.有两个相等的实数根 D.只有一个解6.扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.7.如图,将直尺与含30°角的三角尺放在一起,若∠1=25°,则∠2的度数是()A.30° B.45° C.55° D.60°8.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为()A.30° B.45°C.60° C.90°9.如图,点A,B,C,D都在上,OA⊥BC,∠AOB=40°,则∠CDA的度数为()A.40° B.30° C.20° D.15°10.如图,一张矩形纸片ABCD的长AB=xcm,宽BC=ycm,把这张纸片沿一组对边AB和D的中点连线EF对折,对折后所得矩形AEFD与原矩形ADCB相似,则x:y的值为()A.2 B. C. D.11.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或512.如图,若一次函数的图象经过二、三、四象限,则二次函数的图象可能是A. B.C. D.二、填空题(每题4分,共24分)13.已知两个数的差等于2,积等于15,则这两个数中较大的是.14.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是_____.15.如图,在△ABC中,∠A=30°,∠B=45°,BC=cm,则AB的长为_____.16.如图,已知等边△ABC的边长为4,P是AB边上的一个动点,连接CP,过点P作∠EPC=60°,交AC于点E,以PE为边作等边△EPD,顶点D在线段PC上,O是△EPD的外心,当点P从点A运动到点B的过程中,点O也随之运动,则点O经过的路径长为_____.17.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点D与点B重合,折痕为EF,则ΔABE的面积为________cm218.如图所示是由若干个完全相同的小正方体搭成的几何体的主视图和俯视图,则这个几何体最少是由________个正方体搭成的。三、解答题(共78分)19.(8分)如图,已知AB为⊙O的直径,点C、D在⊙O上,CD=BD,E、F是线段AC、AB的延长线上的点,并且EF与⊙O相切于点D.(1)求证:∠A=2∠BDF;(2)若AC=3,AB=5,求CE的长.20.(8分)抛物线经过点O(0,0)与点A(4,0),顶点为点P,且最小值为-1.(1)求抛物线的表达式;(1)过点O作PA的平行线交抛物线对称轴于点M,交抛物线于另一点N,求ON的长;(3)抛物线上是否存在一个点E,过点E作x轴的垂线,垂足为点F,使得△EFO∽△AMN,若存在,试求出点E的坐标;若不存在请说明理由.21.(8分)利用公式法解方程:x2﹣x﹣3=1.22.(10分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.类别频数(人数)频率小说0.5戏剧4散文100.25其他6合计1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.23.(10分)已知:点D是△ABC中AC的中点,AE∥BC,ED交AB于点G,交BC的延长线于点F.(1)求证:△GAE∽△GBF;(2)求证:AE=CF;(3)若BG:GA=3:1,BC=8,求AE的长.24.(10分)如图,点为上一点,点在直径的延长线上,且,过点作的切线,交的延长线于点.判断直线与的位置关系,并说明理由;若,求:①的半径,②的长.25.(12分)如图,一次函数y=k1x+b的图象与x轴、y轴分别交于A,B两点,与反比例函数y=的图象分别交于C,D两点,点C(2,4),点B是线段AC的中点.(1)求一次函数y=k1x+b与反比例函数y=的解析式;(2)求△COD的面积;(3)直接写出当x取什么值时,k1x+b<.26.用适当的方法解下列方程:(1)x2-6x+1=0(2)x2-4=2x+4

参考答案一、选择题(每题4分,共48分)1、C【分析】利用位似图形的性质,结合两图形的位似比,即可得出C点坐标.【详解】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小后得到线段CD,且D(4,1),∴在第一象限内将线段AB缩小为原来的后得到线段CD,∴点C的横坐标和纵坐标都变为A点的一半,∴点C的坐标为:(3,3).故选:C.【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.2、B【分析】两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,根据概率公式即可求解.【详解】解:两辆阅兵车的车牌号共含14位数字或字母,其中数字9出现了3次,所以“9”这个数字在这两辆车牌号中出现的概率为.故选:B.【点睛】本题考查了概率的计算,掌握概率计算公式是解题关键.3、B【分析】根据函数的图象即可得到结论.【详解】解:∵二次函数y1=ax2+bx+c(a≠0)的图象的开口向上,

∴二次函数y1有最小值,故①错误;

观察函数图象可知二次函数y1的图象关于直线x=-1对称,故②正确;

当x=-2时,二次函数y1的值小于0,故③错误;

当x<-3或x>-1时,抛物线在直线的上方,

∴m的取值范围为:m<-3或m>-1,故④正确.

故选B.【点睛】本题考查了二次函数图象上点的坐标特征以及函数图象,熟练运用二次函数图象上点的坐标特征求出二次函数解析式是解题的关键.4、A【分析】首先设抛物线的解析式y=ax2+bx+c,由题意可以知道A(-30,0)B(30,0)C(0,15)代入即可得到解析式.【详解】解:设此桥上半部分所在抛物线的解析式为y=ax2+bx+c∵AB=60OC=15∴A(-30,0)B(30,0)C(0,15)将A、B、C代入y=ax2+bx+c中得到y=-x2+15故选A【点睛】此题主要考查了二次函数的实际应用问题,主要培养学生用数学知识解决实际问题的能力.5、B【分析】求出判别式的值即可得到答案.【详解】∵2-4ac=9-(-4)=13,∴方程有两个不相等的实数根,故选:B.【点睛】此题考查一元二次方程的根的判别式,熟记判别式的计算方法及结果的三种情况是解题的关键.6、D【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.7、C【分析】通过三角形外角的性质得出∠BEF=∠1+∠F,再利用平行线的性质∠2=∠BEF即可.【详解】∵∠BEF是△AEF的外角,∠1=25°,∠F=30°,∴∠BEF=∠1+∠F=55°,∵AB∥CD,∴∠2=∠BEF=55°,故选:C.【点睛】本题主要考查平行线的性质及三角形外角的性质,掌握三角形外角的性质及平行线的性质是解题的关键.8、C【分析】根据弧长公式,即可求解【详解】设圆心角是n度,根据题意得,解得:n=1.故选C【点睛】本题考查了弧长的有关计算.9、C【分析】先根据垂径定理由OA⊥BC得到,然后根据圆周角定理计算即可.【详解】解:∵OA⊥BC,∴,∴∠ADC=∠AOB=×40°=20°.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理.10、B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】解:∵四边形ABCD是矩形,宽BC=ycm,

∴AD=BC=ycm,

由折叠的性质得:AE=AB=x,

∵矩形AEFD与原矩形ADCB相似,

∴,即,

∴x2=2y2,

∴x=y,

∴.

故选:B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.11、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.12、C【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可.【详解】解:的图象经过二、三、四象限,,,抛物线开口方向向下,抛物线对称轴为直线,对称轴在y轴的左边,纵观各选项,只有C选项符合.故选C.【点睛】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a、b的正负情况是解题的关键.二、填空题(每题4分,共24分)13、5【分析】设这两个数中的大数为x,则小数为x﹣2,由题意建立方程求其解即可.【详解】解:设这两个数中的大数为x,则小数为x﹣2,由题意,得x(x﹣2)=15,解得:x1=5,x2=﹣3,∴这两个数中较大的数是5,故答案为5;考点:一元二次方程的应用.14、1【分析】根据三角形中位线定理得到AC=2DE=5,AC∥DE,根据勾股定理的逆定理得到∠ACB=90°,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可.【详解】∵D,E分别是AB,BC的中点,∴AC=2DE=5,AC∥DE,AC2+BC2=52+122=169,AB2=132=169,∴AC2+BC2=AB2,∴∠ACB=90°,∵AC∥DE,∴∠DEB=90°,又∵E是BC的中点,∴直线DE是线段BC的垂直平分线,∴DC=BD,∴△ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.15、【分析】根据题意过点C作CD⊥AB,根据∠B=45°,得CD=BD,根据勾股定理和BC=得出BD,再根据∠A=30°,得出AD,进而分析计算得出AB即可.【详解】解;过点C作CD⊥AB,交AB于D.∵∠B=45°,∴CD=BD,∵BC=,∴BD=,∵∠A=30°,∴tan30°=,∴AD===3,∴AB=AD+BD=.故答案为:.【点睛】本题考查解直角三角形,熟练应用三角函数的定义是解题的关键.16、【分析】根据等边三角形的外心性质,根据特殊角的三角函数即可求解.【详解】解:如图,作BG⊥AC、CF⊥AB于点G、F,交于点I,则点I是等边三角形ABC的外心,∵等边三角形ABC的边长为4,∴AF=BF=2∠IAF=30°∴AI=∵点P是AB边上的一个动点,O是等边三角形△EPD的外心,∴当点P从点A运动到点B的过程中,点O也随之运动,点O的经过的路径长是AI的长,∴点O的经过的路径长是.故答案为:.【点睛】本题考查等边三角形的外心性质,关键在于熟悉性质,结合图形计算.17、6【解析】由折叠的性质可知AE与BE间的关系,根据勾股定理求出AE长可得面积.【详解】解:由题意可知BE=ED.因为AD=AE+DE=AE+BE=9cm,所以BE=9-AEcm.在RtΔABE中,根据勾股定理可知,AB2+AE2=BE2,所以32+A故答案为:6【点睛】本题考查了勾股定理,由折叠性质得出直角边与斜边的关系是解题的关键.18、【分析】易得这个几何体共有3层,由俯视图可得第一层立方体的个数,由主视图可得第二层、第三层立方体最少的个数,相加即可.【详解】结合主视图和俯视图可知,第一层、第二层最少各层最少1个,第三层一定有3个,∴组成这个几何体的小正方体的个数最少是1个,故答案为:1.【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.三、解答题(共78分)19、(1)见解析:(2)CE=1.【分析】(1)连接AD,如图,先证明得到∠1=∠2,再根据圆周角定理得到∠ADB=90°,根据切线的性质得到OD⊥EF,然后证明∠1=∠4得到结论;(2)连接BC交OD于F,如图,根据圆周角定理得到∠ACB=90°,再根据垂径定理,由得到OD⊥BC,则CF=BF,所以OF=AC=,从而得到DF=1,然后证明四边形CEDF为矩形得CE=1.【详解】(1)证明:连接AD,如图,∵CD=BD,∴,∴∠1=∠2,∵AB为直径,∴∠ADB=90°,∴∠1+∠ABD=90°,∵EF为切线,∴OD⊥EF,∴∠3+∠4=90°,∵OD=OB,∴∠3=∠OBD,∴∠1=∠4,∴∠A=2∠BDF;(2)解:连接BC交OD于F,如图,∵AB为直径,∴∠ACB=90°,∵,∴OD⊥BC,∴CF=BF,∴OF=AC=,∴DF=﹣=1,∵∠ACB=90°,OD⊥BC,OD⊥EF,∴四边形CEDF为矩形,∴CE=DF=1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和勾股定理.20、(1)抛物线的表达式为,(或);(1);(3)抛物线上存在点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【分析】(1)由点O(0,0)与点A(4,0)的纵坐标相等,可知点O、A是抛物线上的一对对称点,所以对称轴为直线x=1,又因为最小值是-1,所以顶点为(1,-1),利用顶点式即可用待定系数法求解;(1)设抛物线对称轴交轴于点D、N(,),先求出=45°,由ON∥PA,依据平行线的性质得到=45°,依据等腰直角三角形两直角边的关系可得到=,解出即可得到点N的坐标,再运用勾股定理求出ON的长度;(3)先运用勾股定理求出AM和OM,再用ON-OM得MN,运用相似三角形的性质得到EF:FO的值,设E(,),分点E在第一象限、第二或四象限讨论,依据EF:FO=1:1列出关于m的方程解出即可.【详解】解:(1)∵抛物线经过点O(0,0)与点A(4,0),∴对称轴为直线x=1,又∵顶点为点P,且最小值为-1,,∴顶点P(1,-1),∴设抛物线的表达式为将O(0,0)坐标代入,解得∴抛物线的表达式为,即;(1)设抛物线对称轴交轴于点D,∵顶点P坐标为(1,-1),∴点D坐标为(1,0)又∵A(4,0),∴△ADP是以为直角的等腰直角三角形,=45°又∵ON∥PA,∴=45°∴若设点N的坐标为(,)则=解得,∴点N的坐标为(,)∴(3)抛物线上存在一个点E,使得△EFO∽△AMN,理由如下:连接PO、AM,∵=45°,=90°,∴,又∵由点D坐标为(1,0),得OD=1,∴,又∵=90°,由A(4,0),D(1,0)得AD=1,∴,同理可得,∴,∴AM:MN=:=1:1∵△EFO∽△AMN∴EF:FO=AM:MN=1:1设点E的坐标为(,)(其中),①当点E在第一象限时,,解得,此时点E的坐标为(,),②当点E在第二象限或第四象限时,,解得,此时点E的坐标为(,)综上所述,抛物线上存在一个点E,使得△EFO∽△AMN,这样的点共有1个,分别是(,)和(,).【点睛】本题是二次函数综合题,考查了运用待定系数法求解析式,运用勾股定理求线段长度,二次函数中相似的存在性问题,解题的关键是用点的坐标求出线段长度,并根据线段之间的关系,建立方程解出得到点的坐标.21、x1=,x2=.【分析】观察方程为一般形式,找出此时二次项系数,一次项系数及常数项,计算出根的判别式,发现其结果大于1,故利用求根公式可得出方程的两个解.【详解】解:x2﹣x﹣3=1,∵a=1,b=﹣1,c=﹣3,∴△=(﹣1)2﹣4×1×(﹣3)=13>1,∴x==,∴x1=,x2=.【点睛】此题考查了利用公式法来求一元二次方程的解,利用此方法解方程时,首先将方程化为一般形式,找出相应的a,b及c的值,代入b2-4ac中求值,当b2-4ac≥1时,可代入求根公式来求解.22、(1)41(2)15%(3)【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵喜欢散文的有11人,频率为1.25,∴m=11÷1.25=41;(2)在扇形统计图中,“其他”类所占的百分比为×111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,∴P(丙和乙)==.23、(1)详见解析;(2)详见解析;(3)AE=1【分析】(1)由AE∥BC可直接判定结论;(2)先证△ADE≌△CDF,即可推出结论;(3)由△GAE∽△GBF,可用相似三角形的性质求出结果.【详解】(1)∵AE∥BC,∴△GAE∽△GBF;(2)∵AE∥BC,∴∠E=∠F,∠EAD=∠FCD,又∵点D是AC的中点,∴AD=CD,∴△ADE≌△CDF(AAS),∴A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论