江苏省南京市建邺三校联合2025届九上数学期末调研试题含解析_第1页
江苏省南京市建邺三校联合2025届九上数学期末调研试题含解析_第2页
江苏省南京市建邺三校联合2025届九上数学期末调研试题含解析_第3页
江苏省南京市建邺三校联合2025届九上数学期末调研试题含解析_第4页
江苏省南京市建邺三校联合2025届九上数学期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省南京市建邺三校联合2025届九上数学期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为()A.100° B.110° C.125° D.130°2.在1、2、3三个数中任取两个,组成一个两位数,则组成的两位数是奇数的概率为()A. B. C. D.3.已知⊙O的直径为8cm,P为直线l上一点,OP=4cm,那么直线l与⊙O的公共点有()A.0个 B.1个 C.2个 D.1个或2个4.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45° B.45°<α<60°C.60°<α<90° D.30°<α<60°5.已知是一元二次方程的一个根,则等于()A. B.1 C. D.26.如图,⊙O中弦AB=8,OC⊥AB,垂足为E,如果CE=2,那么⊙O的半径长是()A.4 B.5 C.6 D.1°7.某楼盘的商品房原价12000元/,国庆期间进行促销活动,经过连续两次降价后,现价9720元/,求平均每次降价的百分率。设平均每次降价的百分率为,可列方程为()A. B.C. D.8.计算:tan45°+sin30°=(

)A. B. C. D.9.已知函数y=ax2+bx+c的图象如图所示,则关于x的方程ax2+bx+c﹣4=0的根的情况是()A.有两个相等的实数根 B.有两个异号的实数根C.有两个不相等的实数根 D.没有实数根10.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为()A.1 B.3 C.5 D.1或511.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2 B.3 C.4 D.512.若一个圆锥的底面积为,圆锥的高为,则该圆锥的侧面展开图中圆心角的度数为()A. B. C. D.二、填空题(每题4分,共24分)13.若是一元二次方程的两个根,则=___________.14.如图,正方形内接于,正方形的边长为,若在这个圆面上随意抛一粒豆子,则豆子落在正方形内的概率是_____________.15.将抛物线向左平移2个单位后所得到的抛物线为________16.若关于的一元二次方程有实数根,则的取值范围是__________.17.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是_____.18.古希腊时期,人们认为最美人体的肚脐至脚底的长度与身高长度之比是(0.618,称之为黄金分割比例),著名的“断臂维纳斯”便是如此,若某位女性身高为165cm,肚脐到头顶高度为65cm,则其应穿鞋跟为_____cm的高跟鞋才能使人体近似满足黄金分割比例.(精确到1cm)三、解答题(共78分)19.(8分)如图,在▱ABCD中,点E是边AD上一点,延长CE到点F,使∠FBC=∠DCE,且FB与AD相交于点G.(1)求证:∠D=∠F;(2)用直尺和圆规在边AD上作出一点P,使△BPC∽△CDP,并加以证明.(作图要求:保留痕迹,不写作法.)20.(8分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且.(1)求的长;(2)若,求.21.(8分)随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.22.(10分)某商城某专卖店销售每件成本为40元的商品,从销售情况中随机抽取一些情况制成统计表如下:(假设当天定的售价是不变的,且每天销售情况均服从这种规律)每件销售价(元)506070758085……每天售出件数30024018015012090……(1)观察这些数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式;(2)该店原有两名营业员,但当每天售出量超过168件时,则必须增派一名营业员才能保证营业,设营业员每人每天工资为40元,求每件产品定价多少元,才能使纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其他开支不计).23.(10分)已知:如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于一、三象限内的A.B两点,与x轴交于C点,点A的坐标为(2,m),点B的坐标为(n,-2),tan∠BOC=.(l)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E(O点除外),使得△BCE与△BCO的面积相等,求出点E的坐标.24.(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处回合,如图所示,以水平方向为轴,喷水池中心为原点建立平面直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?25.(12分)总书记指出,到2020年全面建成小康社会,实现第一个百年奋斗目标.为贯彻的指示,实现精准脱贫,某区相关部门指导对口帮扶地区的村民,加工包装当地特色农产品进行销售,以增加村民收入.已知该特色农产品每件成本10元,日销售量(袋)与每袋的售价(元)之间关系如下表:每袋的售价(元)…2030…日销售量(袋)…2010…如果日销售量y(袋)是每袋的售价x(元)的一次函数,请回答下列问题:(1)求日销售量y(袋)与每袋的售价x(元)之间的函数表达式;(2)求日销售利润(元)与每袋的售价(元)之间的函数表达式;(3)当每袋特色农产品以多少元出售时,才能使每日所获得的利润最大?最大利润是多少元?(提示:每袋的利润=每袋的售价每袋的成本)26.有A、B、C1、C2四张同样规格的硬纸片,它们的背面完全一样,正面如图1所示.将它们背面朝上洗匀后,随机抽取并拼图.(1)填空:随机抽出一张,正面图形正好是中心对称图形的概率是__________.(2)随机抽出两张(不放回),其图形可拼成如图2的四种图案之一.请你用画树状图或列表的方法,分析拼成哪种图案的概率最大?

参考答案一、选择题(每题4分,共48分)1、B【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【详解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圆周角定理)故选:B.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、C【分析】列举出所有情况,看末位是1和3的情况占所有情况的多少即可.【详解】依题意画树状图:∴共有6种情况,是奇数的有4种情况,所以组成的两位数是偶数的概率=,故选:C.【点睛】本题考查了树状图法求概率以及概率公式;如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是不放回实验.3、D【分析】根据垂线段最短,得圆心到直线的距离小于或等于4cm,再根据数量关系进行判断.若d<r,则直线与圆相交;若d=r,则直线与圆相切;若d>r,则直线与圆相离;即可得出公共点的个数.【详解】解:根据题意可知,圆的半径r=4cm.∵OP=4cm,当OP⊥l时,直线和圆是相切的位置关系,公共点有1个;当OP与直线l不垂直时,则圆心到直线的距离小于4cm,所以是相交的位置关系,公共点有2个.∴直线L与⊙O的公共点有1个或2个,故选D.【点睛】本题考查了直线与圆的位置关系.特别注意OP不一定是圆心到直线的距离.4、B【详解】∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选B.【点睛】本题主要考查了余弦函数、正切函数的增减性与特殊角的余弦函数、正切函数值,熟记特殊角的三角函数值和了解锐角三角函数的增减性是解题的关键5、D【分析】直接把x=1代入方程得到关于m的方程,然后解关于m的方程即可.【详解】解:把x=1代入得m-1-1+1=0,

解得m=1.

故选:D.【点睛】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6、B【分析】连接OA,由于半径OC⊥AB,利用垂径定理可知AB=2AE,设OA=OC=x,在Rt△AOE中利用勾股定理易求OA.【详解】解:连接OA,∵OC⊥AB,∴AB=2AE=8,∴AE=4,设OA=OC=x,则OE=OC-CE=x-2在Rt△AOE由勾股定理得:即:,解得:,故选择:B【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7、D【分析】根据题意利用基本数量关系即商品原价×(1-平均每次降价的百分率)=现在的价格,列方程即可.【详解】解:由题意可列方程是:.故选:D.【点睛】本题考查一元二次方程的应用最基本数量关系:商品原价×(1-平均每次降价的百分率)=现在的价格.8、C【解析】代入45°角的正切函数值和30°角的正弦函数值计算即可.【详解】解:原式=故选C.【点睛】熟记“45°角的正切函数值和30°角的正弦函数值”是正确解答本题的关键.9、A【分析】根据抛物线的顶点坐标的纵坐标为4,判断方程ax2+bx+c﹣4=0的根的情况即是判断函数y=ax2+bx+c的图象与直线y=4交点的情况.【详解】∵函数的顶点的纵坐标为4,∴直线y=4与抛物线只有一个交点,∴方程ax2+bx+c﹣4=0有两个相等的实数根,故选A.【点睛】本题考查了二次函数与一元二次方程,熟练掌握一元二次方程与二次函数间的关系是解题的关键.10、D【分析】分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.【详解】当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,故选D.【点睛】本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.11、B【解析】∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG•BF=2,∴AE=(舍负),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明△AEG∽△BFE.12、C【分析】根据圆锥底面积求得圆锥的底面半径,然后利用勾股定理求得母线长,根据圆锥的母线长等于展开图扇形的半径,求出圆锥底面圆的周长,也即是展开图扇形的弧长,然后根据弧长公式可求出圆心角的度数.【详解】解:∵圆锥的底面积为4πcm2,

∴圆锥的底面半径为2cm,

∴底面周长为4π,

圆锥的高为4cm,

∴由勾股定理得圆锥的母线长为6cm,

设侧面展开图的圆心角是n°,

根据题意得:=4π,

解得:n=1.

故选:C.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.二、填空题(每题4分,共24分)13、1【分析】根据韦达定理可得,,将整理得到,代入即可.【详解】解:∵是一元二次方程的两个根,∴,,∴,故答案为:1.【点睛】本题考查韦达定理,掌握,是解题的关键.14、【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【详解】解:因为正方形的边长为2cm,则对角线的长为cm,所以⊙O的半径为cm,直径为2cm,⊙O的面积为2πcm2;正方形的面积为4cm2因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD内)=.故答案为:.【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有

P(A)=.15、【分析】根据平移规律“左加右减,上加下减”即可写出表达式.【详解】根据函数的图形平移规律可知:抛物线向左平移2个单位后所得到的抛物线为.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.16、【分析】一元二次方程有实数根,即【详解】解:一元二次方程有实数根解得【点睛】本题考查与系数的关系.17、.x1=-3,x2=2【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(−3,0),(2,0),∴当x=−3或x=2时,y=0,即方程的解为故答案为:18、1【分析】根据黄金分割的概念,列出方程直接求解即可.【详解】设她应选择高跟鞋的高度是xcm,

则≈0.618,

解得:x≈1,且符合题意.

故答案为1.【点睛】此题考查黄金分割的应用,解题关键是明确黄金分割所涉及的线段的比.三、解答题(共78分)19、(1)详见解析;(2)详见解析.【分析】(1)根据四边形ABCD是平行四边形可得AD∥BC,∠FGE=FBC,再根据已知∠FBC=∠DCE,进而可得结论;(2)作三角形FBC的外接圆交AD于点P即可证明.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC∴∠FGE=∠FBC∵∠FBC=∠DCE,∴∠FGE=∠DCE∵∠FEG=∠DEC∴∠D=∠F.(2)如图所示:点P即为所求作的点.证明:作BC和BF的垂直平分线,交于点O,作△FBC的外接圆,连接BO并延长交AD于点P,∴∠PCB=90°∵AD∥BC∴∠CPD=∠PCB=90°由(1)得∠F=∠D∵∠F=∠BPC∴∠D=∠BPC∴△BPC∽△CDP.【点睛】此题主要考查圆的综合应用,解题的关键是熟知平行四边形的性质、外接圆的性质及相似三角形的判定与性质.20、(1)6;(2)4【分析】(1)连接EF,证明△EFG∽△DCG.推出,求出DE即可解决问题.(2)由三角形的高相同,则三角形的面积之比等于底边之比,求出,,即可求出答案.【详解】解:(1)连接.∵是平行四边形,∴点为的中点.∵为的中点,∴,且.∴.∴∵,∴,∴,∴;(2)∵,,,∴,∴,∵BE=DE,∴∴.【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、该种药品平均每次降价的百分率是30%.【解析】试题分析:设该种药品平均每场降价的百分率是x,则两个次降价以后的价格是,据此列出方程求解即可.试题解析:设该种药品平均每场降价的百分率是x,由题意得:解得:(不合题意舍去),=30%.答:该种药品平均每场降价的百分率是30%.考点:一元二次方程的应用;增长率问题.22、(1)y=-6x+600;(2)每件产品定价72元,才能使纯利润最大,纯利润最大为5296元.【分析】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,解出k、b即可求出;(2)由利润=(售价−成本)×售出件数−工资,列出函数关系式,求出最大值.【详解】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,经过(50,300)、(60,240),,解得k=−6,b=600,故y=−6x+600;(2)①设每件产品应定价x元,由题意列出函数关系式W=(x−40)×(−6x+600)−3×40=−6x2+840x−24000−120=−6(x2−140x+4020)=−6(x−70)2+1.②当y=168时x=72,这时只需要两名员工,W=(72−40)×168−80=5296>1.故当每件产品应定价72元,才能使每天门市部纯利润最大.【点睛】此题主要考查了二次函数的应用,由利润=(售价−成本)×售出件数−工资,列出函数关系式,求出最大值,运用二次函数解决实际问题,比较简单.23、(1)反比例函数解析式为y=,一次函数解析式为y=x+3;(2)(﹣6,0).【分析】(1)过B点作BD⊥x轴,垂足为D,由B(n,-2)得BD=2,由tan∠BOC="2/5",解直角三角形求OD,确定B点坐标,得出反比例函数关系式,再由A、B两点横坐标与纵坐标的积相等求n的值,由“两点法”求直线AB的解析式;(2)点E为x轴上的点,要使得△BCE与△BCO的面积相等,只需要CE=CO即可,根据直线AB解析式求CO,再确定E点坐标.【详解】解:(1)过B点作BD⊥x轴,垂足为D,∵B(n,﹣2),∴BD=2,在Rt△OBD在,tan∠BOC=,即,解得OD=5,又∵B点在第三象限,∴B(﹣5,﹣2),将B(﹣5,﹣2)代入y=中,得k=xy=10,∴反比例函数解析式为y=,将A(2,m)代入y=中,得m=5,∴A(2,5),将A(2,5),B(﹣5,﹣2)代入y=ax+b中,得,解得,则一次函数解析式为y=x+3;(2)由y=x+3得C(﹣3,0),即OC=3,∵S△BCE=S△BCO,∴CE=OC=3,∴OE=6,即E(﹣6,0).24、(1);(2)王师傅必须在7米以内.【分析】(1)由抛物线的顶点坐标为(3,5),设抛物线解析式为y=a(x-3)+5,把(8,0)单人宽求出a的值,即可得抛物线解析式;(2)把y=1.8代入解析式求出x的值,根据函数图像的对称性求出负半轴的坐标即可.【详解】(1)设,过点∴代入,解得∴抛物线(第一象限部分)的函数表达式为(2)∴或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论