济南市重点中学2025届九年级数学第一学期期末调研模拟试题含解析_第1页
济南市重点中学2025届九年级数学第一学期期末调研模拟试题含解析_第2页
济南市重点中学2025届九年级数学第一学期期末调研模拟试题含解析_第3页
济南市重点中学2025届九年级数学第一学期期末调研模拟试题含解析_第4页
济南市重点中学2025届九年级数学第一学期期末调研模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

济南市重点中学2025届九年级数学第一学期期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,为的直径,为上两点,若,则的大小为().A.60° B.50° C.40° D.20°2.如果、是一元二次方程的两根,则的值是()A.3 B.4 C.5 D.63.点M(2,-3)关于原点对称的点N的坐标是:()A.(-2,-3) B.(-2,3) C.(2,3) D.(-3,2)4.如图,已知⊙O的直径AB⊥弦CD于点E,下列结论中一定正确的是()A.AE=OE B.CE=DE C.OE=CE D.∠AOC=60°5.下列函数的对称轴是直线的是()A. B. C. D.6.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.B.C.D.7.△ABC的外接圆圆心是该三角形()的交点.A.三条边垂直平分线 B.三条中线C.三条角平分线 D.三条高8.下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形 B.等腰三角形 C.矩形 D.正方形9.抛物线y=﹣2(x+1)2﹣3的对称轴是()A.直线x=1 B.直线x=﹣1 C.直线x=3 D.直线x=﹣310.如图,四边形ABCD内接于⊙O,连接AC,BD,点E在AD的延长线上,()A.若DC平分∠BDE,则AB=BCB.若AC平分∠BCD,则C.若AC⊥BD,BD为直径,则D.若AC⊥BD,AC为直径,则11.下列汽车标志图片中,既是轴对称图形又是中心对称图形的是()A. B. C. D.12.对于二次函数y=-x2+2x-3,下列说法正确的是()A.当x>0,y随x的增大而减少 B.当x=2时,y有最大值-1C.图像的顶点坐标为(2,-5) D.图像与x轴有两个交点二、填空题(每题4分,共24分)13.若某斜面的坡度为,则该坡面的坡角为______.14.如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)15.已知二次函数y=x2﹣4x+3,当a≤x≤a+5时,函数y的最小值为﹣1,则a的取值范围是_______.16.已知方程x2+mx+3=0的一个根是1,则它的另一个根是_____,m的值是______.17.因式分解:_______;18.已知一列分式,,,,,,…,观察其规律,则第n个分式是_______.三、解答题(共78分)19.(8分)已知正方形ABCD的边长为2,中心为M,⊙O的半径为r,圆心O在射线BD上运动,⊙O与边CD仅有一个公共点E.(1)如图1,若圆心O在线段MD上,点M在⊙O上,OM=DE,判断直线AD与⊙O的位置关系,并说明理由;(2)如图2,⊙O与边AD交于点F,连接MF,过点M作MF的垂线与边CD交于点G,若,设点O与点M之间的距离为,EG=,当时,求的函数解析式.20.(8分)如图,已知一次函数与反比例函数的图象相交于点,与轴相交于点.(1)填空:的值为,的值为;(2)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;21.(8分)先化简,再求值:()÷,其中a是一元二次方程对a2+3a﹣2=0的根.22.(10分)在平面直角坐标系中,对“隔离直线”给出如下定义:点是图形上的任意一点,点是图形上的任意一点,若存在直线:满足且,则称直线:是图形与的“隔离直线”,如图,直线:是函数的图像与正方形的一条“隔离直线”.

(1)在直线①,②,③,④中,是图函数的图像与正方形的“隔离直线”的为.(2)如图,第一象限的等腰直角三角形的两腰分别与坐标轴平行,直角顶点的坐标是,⊙O的半径为,是否存在与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式:若不存在,请说明理由;(3)正方形的一边在轴上,其它三边都在轴的左侧,点是此正方形的中心,若存在直线是函数的图像与正方形的“隔离直线”,请直接写出的取值范围.23.(10分)已知一元二次方程x2﹣3x+m=1.(1)若方程有两个不相等的实数根,求m的取值范围.(2)若方程有两个相等的实数根,求此时方程的根.24.(10分)如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.25.(12分)如图,在中,,是边上的中线,过点作,垂足为,交于点,.(1)求的值:(2)若,求的长.26.已知二次函数y=x2-2x-1.(1)求图象的对称轴、顶点坐标;(2)当x为何值时,y随x的增大而增大?

参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意连接AD,再根据同弧的圆周角相等,即可计算的的大小.【详解】解:连接,∵为的直径,∴.∵,∴,∴.故选B.【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.2、B【解析】先求得函数的两根,再将两根带入后面的式子即可得出答案.【详解】由韦达定理可得α+β=-3,又=3--=)=1+3=4,所以答案选择B项.【点睛】本题考察了二次方程的求根以及根的意义和根与系数的关系,根据得到的等量关系是解决本题的关键.3、B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.4、B【分析】根据垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧求解.【详解】解:∵直径AB⊥弦CD∴CE=DE故选B.【点睛】本题考查垂径定理,本题属于基础应用题,只需学生熟练掌握垂径定理,即可完成.5、C【分析】根据二次函数的性质分别写出各选项中抛物线的对称轴,然后利用排除法求解即可.【详解】A、对称轴为y轴,故本选项错误;B、对称轴为直线x=3,故本选项错误;C、对称轴为直线x=-3,故本选项正确;D、∵=∴对称轴为直线x=3,故本选项错误.故选:C.【点睛】本题考查了二次函数的性质,主要利用了对称轴的确定,是基础题.6、D【分析】分别表示出5月,6月的营业额进而得出等式即可.【详解】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:.故选D.【点睛】考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.7、A【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可.【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.8、B【分析】根据轴对称图形的概念和中心对称图形的概念进行分析判断.【详解】解:选项A,平行四边形不是轴对称图形,是中心对称图形,错误;选项B,等腰三角形是轴对称图形,不是中心对称图形,正确.选项C,矩形是轴对称图形,也是中心对称图形;错误;选项D,正方形是轴对称图形,也是中心对称图形,错误;故答案选B.【点睛】本题考查轴对称图形的概念和中心对称图形的概念,正确理解概念是解题关键.9、B【分析】根据题目中抛物线的解析式,可以写出该抛物线的对称轴.【详解】解:∵抛物线y=﹣2(x+1)2﹣3,∴该抛物线的对称轴为直线x=﹣1,故选:B.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k).10、D【分析】利用圆的相关性质,依次分析各选项作答.【详解】解:A.若平分,则,∴A错B.若平分,则,则,∴B错C.若,为直径,则∴C错D.若,AC为直径,如图:连接BO并延长交于点E,连接DE,∵,∴.∵BE为直径,∴,,∴.∴选D.【点睛】本题考查圆的相关性质,另外需结合勾股定理,三角函数相关知识解题属于综合题.11、C【解析】根据轴对称图形和中心对称图形的性质进行判断即可.【详解】A.既不是轴对称图形,也不是中心对称图形,错误;B.是轴对称图形,不是中心对称图形,错误;C.既是轴对称图形,也是中心对称图形,正确;D.是轴对称图形,不是中心对称图形,错误;故答案为:C.【点睛】本题考查了轴对称图形和中心对称图形的问题,掌握轴对称图形和中心对称图形的性质是解题的关键.12、B【分析】根据题目中函数解析式和二次函数的性质,可以逐一判断各选项即可.【详解】∵二次函数y=-x2+2x-3的图象开口向下,且以为对称轴的抛物线,A.当x>2,y随x的增大而减少,该选项错误;B.当x=2时,y有最大值-1,该选项正确;C.图像的顶点坐标为(2,-1),该选项错误;D.图像与x轴没有交点,该选项错误;故选:B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,二次函数的最值和顶点,关键是明确题意,利用二次函数的性质作答.二、填空题(每题4分,共24分)13、30°【分析】根据坡度与坡比之间的关系即可得出答案.【详解】∵∴坡面的坡角为故答案为:【点睛】本题主要考查坡度与坡角,掌握坡度与坡角之间的关系是解题的关键.14、【分析】先由题意得到,再设设,由勾股定理得到,解得x的值,最后将点C、G、A坐标代入二次函数表达式,即可得到答案.【详解】解:点,反比例函数经过点B,则点,则,,∴,设,则,,由勾股定理得:,解得:,故点,将点C、G、A坐标代入二次函数表达式得:,解得:,故答案为.【点睛】本题考查求二次函数解析式,解题的关键是熟练掌握待定系数法.15、﹣3≤a≤1【分析】求得对称轴,然后分三种情况讨论即可求得.【详解】解:∵二次函数y=x1﹣4x+3=(x﹣1)1﹣1,∴对称轴为直线x=1,当a<1<a+5时,则在a≤x≤a+5范围内,x=1时有最小值﹣1,当a≥1时,则在a≤x≤a+5范围内,x=a时有最小值﹣1,∴a1﹣4a+3=﹣1,解得a=1,当a+5≤1时,则在a≤x≤a+5范围内,x=a+5时有最小值﹣1,∴(a+5)1﹣4(a+5)+3=﹣1,解得a=﹣3,∴a的取值范围是﹣3≤a≤1,故答案为:﹣3≤a≤1.【点睛】本题考查了二次函数的最值,熟练掌握二次函数的性质是解题的关键.16、3-4【解析】试题分析:根据韦达定理可得:·==3,则方程的另一根为3;根据韦达定理可得:+=-=4=-m,则m=-4.考点:方程的解17、(a-b)(a-b+1)【解析】原式变形后,提取公因式即可得到结果.【详解】解:原式=(a-b)2+(a-b)=(a-b)(a-b+1),

故答案为:(a-b)(a-b+1)【点睛】此题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.18、【分析】分别找出符号,分母,分子的规律,从而得出第n个分式的式子.【详解】观察发现符号规律为:正负间或出现,故第n项的符号为:分母规律为:y的次序依次增加2、3、4等等,故第n项为:=分子规律为:x的次数为对应项的平方加1,故第n项为:故答案为:.【点睛】本题考查找寻规律,需要注意,除了寻找数字规律外,我们还要寻找符号规律.三、解答题(共78分)19、(1)相切,证明详见解析;(2).【分析】(1)过O作OF⊥AD于F,连接OE,可证△ODF≌△ODE,可得OF=OE,根据相切判定即可得出:AD与相切;(2)连接MC,可证,可得DF=CG,过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b,由于△DHF与△DPE都是等腰直角三角形,设EP=DP=a,FH=DH=b,利用勾股定理:可列出方程组解得a=b,可得,.由于可得,由可得OD=a,由OD=OM-DM,可得,代入2DF+y=2可得,整理得y与x的函数解析式,由DF≤1,EG≥0,可得x的取值范围,即可求解问题.【详解】解:(1)直线AD与⊙O相切,理由如下:过O作OF⊥AD于F,连接OE∴∠OFD=90°在正方形ABCD中,BD平分∠ADE,∠ADE=90°∴∠FDO=∠EDO=45°∵与CD仅有一个公共点E∴CD与相切∴OE⊥DC,OE为半径∴∠OED=90°又∵OD=OD∴△ODF≌△ODE∴OF=OE∵OF⊥AD、OF=OE∴AD与相切(2)连接MC在正方形ABCD中,∠BCD=90°,∠ADB=45°∵∠BCD=90°,M为正方形的中心∴MC=MD=,∠ADB=∠DCM=45°∵FM⊥MG,即∠FMG=90°且在正方形ABCD中,∠DMC=90°∴∠FMD+∠DMG=∠DMG+∠CMG∴∠FMD=∠CMG∴∴DF=CG过点E作EP⊥BD于P,过点F作FH⊥BD于H设DP=a,DH=b∵∠FDM=∠EDM=45°∴△DHF与△DPE都是等腰直角三角形∴EP=DP=a,FH=DH=b∵,且由(1)得∴点O在正方形ABCD外∴OP=OD+DP,OH=OD+DH在Rt△OPE与Rt△OHF中得:(a-b)(OD+a+b)=0∴a-b=0或OD+a+b=0∵OD+a+b>0∴a-b=0∴a=b即点P与点H重合,也即EF⊥BD,垂足为P(或H)∵DP=a,DH=b∵在Rt△DPE中,在Rt△DHF中,∴DF=DE∵CD=DE+EG+CG=2,即2DF+EG=2∴2DF+y=2∵在Rt△DPF中,,且∴在Rt△OPE与Rt△OHF中∴∴OD+a=2a∴OD=a又因为OD=OM-DM,即∴又因为2DF+y=2∴∴∴∵DF≤1,且2DF+EG=2∴EG≥0,即y≥0∴∴∴y与x的函数解析式为【点睛】本题考查一次函数综合题、正方形的性质、三角形全等的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识,学会利用参数,构建方程以及方程组解决问题.20、(1)3,12;(2)D的坐标为【分析】(1)把点A(4,n)代入一次函数y=x-3,得到n的值为3;再把点A(4,3)代入反比例函数,得到k的值为12;

(2)根据坐标轴上点的坐标特征可得点B的坐标为(2,0),过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,根据勾股定理得到AB=,根据AAS可得△ABE≌△DCF,根据菱形的性质和全等三角形的性质可得点D的坐标.【详解】(1)把点A(4,n)代入一次函数,可得;把点A(4,3)代入反比例函数,可得,解得k=12.(2)∵一次函数与轴相交于点B,由,解得,∴点B的坐标为(2,0)如图,过点A作轴,垂足为E,过点D作轴,垂足为F,∵A(4,3),B(2,0)∴OE=4,AE=3,OB=2,∴BE=OE-OB=4-2=2在中,.∵四边形ABCD是菱形,∴,∴.∵轴,轴,∴.在与中,,,AB=CD,∴,∴CF=BE=2,DF=AE=3,∴.∴点D的坐标为【点睛】本题考查了反比例函数与几何图形的综合,熟练掌握菱形的性质是解题的关键.21、a1+3a,1【分析】根据分式的减法和除法可以化简题目中的式子,然后根据a1+3a﹣1=0可以得到a1+3a的值,从而可以求得所求式子的值.【详解】解:()÷=[]•a(a﹣1)=()•a(a﹣1)=•a(a﹣1)=a(a+3)=a1+3a,∵a1+3a﹣1=0,∴a1+3a=1,∴原式=1.【点睛】本题考查分式的化简求值,代数式求值.解决此题应注意运算顺序,能熟练掌握通分、因式分解、约分等知识点是解题关键.22、(1)①④;(2);(3)或【分析】(1)根据的“隔离直线”的定义即可解决问题;(2)存在,连接,求得与垂直且过的直接就是“隔离直线”,据此即可求解;(3)分两种情形正方形在x轴上方以及在x轴下方时,分别求出正方形的一个顶点在直线上时的t的值即可解决问题.【详解】(1)根据的“隔离直线”的定义可知,是图1函数的图象与正方形OABC的“隔离直线”;直线也是图1函数的图象与正方形OABC的“隔离直线”;而与不满足图1函数的图象与正方形OABC的“隔离直线”的条件;

故答案为:①④;(2)存在,理由如下:连接,过点作轴于点,如图,在Rt△DGO中,,∵⊙O的半径为,

∴点D在⊙O上.

过点D作DH⊥OD交y轴于点H,

∴直线DH是⊙O的切线,也是△EDF与⊙O的“隔离直线”.设直线OD的解析式为,将点D(2,1)的坐标代入得,解得:,∵DH⊥OD,∴设直线DH的解析式为,将点D(2,1)的坐标代入得,解得:,∴直线DH的解析式为,∴“隔离直线”的表达式为;(3)如图:由题意点F的坐标为(),当直线经过点F时,,

∴,

∴直线,即图中直线EF,

∵正方形A1B1C1D1的中心M(1,t),

过点作⊥y轴于点G,∵点是正方形的中心,且,∴B1C1,,∴正方形A1B1C1D1的边长为2,

当时,,∴点C1的坐标是(),此时直线EF是函数)的图象与正方形A1B1C1D1的“隔离直线”,∴点的坐标是(-1,2),此时;

当直线与只有一个交点时,,消去y得到,由,可得,

解得:,同理,此时点M的坐标为:(),∴,

根据图象可知:当或时,直线是函数)的图象与正方形A1B1C1D1的“隔离直线”.【点睛】本题是二次函数综合题,考查了二次函数的性质、正方形的性质、一次函数的应用、二元二次方程组.一元二次方程的根的判别式等知识,解题的关键是理解题意,灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.23、(1);(2)x1=x2=【分析】(1)根据一元二次方程根的判别式大于零,列出不等式,即可求解;(2)根据一元二次方程根的判别式等于零,列出方程,求出m的值,进而即可求解.【详解】(1)∵一元二次方程x2﹣3x+m=1有两个不相等的实数根,∴∆=b2﹣4ac=9﹣4m>1,∴m<;(2)∵一元二次方程x2﹣3x+m=1有两个相等的实数根,∴∆=b2﹣4ac=9﹣4m=1,∴m=,∴x2﹣3x+=1,∴x1=x2=.【点睛】本题主要考查一元二次方程根的判别式,掌握根的判别式与一元二次方程根的情况关系是解题的关键.24、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D为顶点的四边形是平行四边形,点Q的坐标为【分析】(1)由题意利用待定系数法,即可求出抛物线的解析式;(1)①由题意分别用含m的代数式表示出点P,E的纵坐标,再用含m的代数式表示出PE的长,运用函数的思想即可求出其最大值;②根据题意对以P、Q、C、D为顶点的四边形是平行四边形分三种情况进行讨论与分析求解.【详解】解:(1)将A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论