




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.函数的图象如图所示,则函数的大致图象是()A. B. C. D.2.以下是某校九年级10名同学参加学校演讲比赛的统计表:成绩/分80859095人数/人1252则这组数据的中位数和平均数分别为()A.90,90 B.90,89 C.85,89 D.85,903.若x,y的值均扩大为原来的3倍,则下列分式的值保持不变的是()A. B. C. D.4.下列各运算中,计算正确的是()A. B. C. D.5.如图,在△中,,将△绕点顺时针旋转,得到△,连接,若,,则线段的长为()A. B. C. D.6.如图,一张长方形纸片的长,宽,点在边上,点在边上,将四边形沿着折叠后,点落在边的中点处,则等于()
A. B. C. D.7.不等式﹣2x>的解集是()A.x<﹣ B.x<﹣1 C.x>﹣ D.x>﹣18.如下书写的四个汉字,其中为轴对称图形的是()A. B. C. D.9.下列图案不是轴对称图形的是()A. B. C. D.10.阅读下列各式从左到右的变形你认为其中变形正确的有()A.3个 B.2个 C.1个 D.0个二、填空题(每小题3分,共24分)11.如图,在梯形ABCD中,AD∥BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为_____.12.已知点A(2,a)与点B(b,4)关于x轴对称,则a+b=_____.13.如图,AB=AD,要证明△ABC与△ADC全等,只需增加的一个条件是______________
14.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是_____.15.如图,将绕着顶点逆时针旋转使得点落在上的处,点落在处,联结,如果,,那么__________.16.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为____________.17.一次生活常识知识竞赛一共有20道题,答对一题得5分,不答得0分,答错扣2分,小聪有1道题没答,竞赛成绩超过80分,则小聪至少答对了__________道题.18.已知实数,0.16,,,其中为无理数的是_________.三、解答题(共66分)19.(10分)等腰三角形中,,,点为边上一点,满足,点与点位于直线的同侧,是等边三角形,(1)①请在图中将图形补充完整:②若点与点关于直线轴对称,______;(2)如图所示,若,用等式表示线段、、之间的数量关系,并说明理由.20.(6分)化简分式:,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(6分)如图,在中,.(1)证明:;(2),求的度数.22.(8分)如图,为的高,为角平分线,若.(1)求的度数;(2)求的度数;(3)若点为线段上任意一点,当为直角三角形时,则求的度数.23.(8分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了箭,他们的总成绩(单位:环)相同.小宇根据他们的成绩绘制了如图尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).第次第次第次第次第次甲成绩乙成绩(1)a=_________(2)(3)参照小宇的计算方法,计算乙成绩的方差;(4)请你从平均数和方差的角度分析,谁将被选中.24.(8分)如图,在平面直角坐标系中,线段AB的两个端点坐标分别为(﹣2,1)和(2,3).(1)在图中分别画出线段AB关于x轴的对称线段A1B1,并写出A1、B1的坐标.(2)在x轴上找一点C,使AC+BC的值最小,在图中作出点C,并直接写出点C的坐标.25.(10分)如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.26.(10分)如图所示,已知在△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且BD和CE相交于O点.(1)试说明△OBC是等腰三角形;(2)连接OA,试判断直线OA与线段BC的关系,并说明理由.
参考答案一、选择题(每小题3分,共30分)1、B【分析】根据一次函数的图象的性质确定a和b的符号,进而解答即可.【详解】解:由函数y=ax+b-2的图象可得:a<0,b-2=0,
∴a<0,b=2>0,
所以函数y=-ax-b的大致图象经过第一、四、三象限,
故选:B.【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a和b的符号.2、B【解析】∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.3、D【分析】根据分式的基本性质,x,y的值均扩大为原来的3倍,求出每个式子的结果,看结果等于原式的即是答案.【详解】根据分式的基本性质,可知若x,y的值均扩大为原来的3倍,A、,错误;B、,错误;C、,错误;D、,正确;故选D.【点睛】本题考查的是分式的基本性质,即分子分母同乘以一个不为0的数,分式的值不变.此题比较简单,但计算时一定要细心.4、C【分析】根据积的乘方、同底数幂的除法、多项式的乘法逐项判断即可.【详解】A.,错误;B.,错误;C.,正确;D.,错误.故选C.【点睛】本题考查积的乘方、同底数幂的除法、多项式的乘法等知识,熟练掌握各计算公式是解题的关键.5、A【分析】根据旋转的性质可知:DE=BC=1,AB=AD,应用勾股定理求出AB的长;又由旋转的性质可知:∠BAD=90°,再用勾股定理即可求出BD的长【详解】解:由旋转的性质得到:,∠BAD=90°∴AC=AE=3,BC=DE=1,AB=AD,∵∠ACB=90°∴AB=AD==在Rt△BAD中,根据勾股定理得:BD===2故选A6、D【分析】连接BE,根据折叠的性质证明△ABE≌△,得到BE=EG,根据点G是AD的中点,AD=4得到AE=2-EG=2-BE,再根据勾股定理即可求出BE得到EG.【详解】连接BE,由折叠得:,=90°,,∴△ABE≌△,∴BE=EG,∵点G是AD的中点,AD=4,∴AG=2,即AE+EG=2,∴AE=2-EG=2-BE,在Rt△ABE中,,∴,∴EG=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE,由此利用勾股定理解题.7、A【解析】解:根据不等式的基本性质3,不等式两边同除以-2,即可得x<-故选A.【点睛】此题主要考查了不等式的性质,利用不等式的基本性质3解题,关键是注意两边同时乘以或除以同一个负数,不等式的符号改变.8、B【分析】轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:根据轴对称图形的定义可得只有“善”符合条件,故选B.【点睛】本题考查轴对称图形的定义,本题属于基础应用题,只需学生熟练掌握轴对称图形的定义,即可完成.9、C【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、是轴对称图形,不合题意;
B、是轴对称图形,不合题意;
C、不是轴对称图形,符合题意;
D、是轴对称图形,不合题意;
故选C.【点睛】此题主要考查了轴对称图形,轴对称图形的关键是寻找对称轴,对称轴可使图形两部分折叠后重合.10、D【分析】根据分式的基本性质进行分析判断即可.【详解】由分式的基本性质可知:(1)等式中从左至右的变形是错误的;(2)等式中从左至右的变形是错误的;(3)等式中从左至右的变形是错误的;(4)等式中从左至右的变形是错误的.故上述4个等式从左至右的变形都是错的.故选D.【点睛】熟记“分式的基本性质:分式的分子和分母同时乘以(或除以)同一个值不为0的整式,分式的值不变.”是解答本题的关键.二、填空题(每小题3分,共24分)11、1【分析】首先过点A作AE∥CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD是平行四边形,△ABE是等边三角形,继而求得答案.【详解】解:过点A作AE∥CD,交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∠B=180°﹣∠BAD=180°﹣120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=1.故答案为:1.【点睛】考核知识点:平行四边形性质.作辅助线是关键.12、-1【分析】直接利用关于x轴对称点的性质得出a,b的值,进而得出答案.【详解】∵点A(1,a)与点B(b,4)关于x轴对称,∴b=1,a=−4,则a+b=−4+1=−1,故答案为:−1.【点睛】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.13、DC=BC(答案不唯一)【分析】要说明△ABC≌△ADC,现有AB=AD,公共边AC=AC,需第三边对应相等,于是答案可得.【详解】解:∵AB=AD,AC=AC
∴要使△ABC≌△ADC可利用SSS判定,
故添加DC=BC(答案不唯一).
故答案为:BC=DC,(答案不唯一).【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关健.14、1【解析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠DAB=∠B,然后根据角平分线的定义与直角三角形两锐角互余求出∠B=10°,再根据直角三角形10°角所对的直角边等于斜边的一半求出BD,然后求解即可.【详解】解:∵AD平分∠BAC,且DE⊥AB,∠C=90°,∴CD=DE=1,∵DE是AB的垂直平分线,∴AD=BD,∴∠B=∠DAB,∵∠DAB=∠CAD,∴∠CAD=∠DAB=∠B,∵∠C=90°,∴∠CAD+∠DAB+∠B=90°,∴∠B=10°,∴BD=2DE=2,∴BC=BD+CD=1+2=1,故答案为1.【点睛】本题考查了角平分线的定义和性质,线段垂直平分线上的点到线段两端点的距离相等的性质,直角三角形10°角所对的直角边等于斜边的一半的性质,属于基础题,熟记性质是解题的关键.15、【分析】先根据勾股定理求出BC,再根据旋转的性质求出AC′、B′C′,在Rt△BC′B′中,求出BC′,B′C′即可解决问题.【详解】在中,,,,,由旋转的性质可得:,,∠AC′B′=∠C=90°,,∠B′C′B=90°,.故答案为:.【点睛】本题考查旋转变换,勾股定理等知识,解题的关键是熟练掌握旋转的性质及勾股定理.16、20°或40°或70°或100°【详解】解:在Rt△ABC中,∠C=90°,∠A=40°,分四种情况讨论:①当AB=BP1时,∠BAP1=∠BP1A=40°;②当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×40°=20°;③当AB=AP4时,∠ABP4=∠AP4B=×(180°﹣40°)=70°;④当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°;综上所述:∴∠APB的度数为:20°、40°、70°、100°.故答案为20°或40°或70°或100°.17、1【分析】设小聪答对了x道题,根据“答对题数×5−答错题数×2>80分”列出不等式,解之可得.【详解】设小聪答对了x道题,根据题意,得:5x−2(19−x)>80,解得x>16,∵x为整数,∴x=1,即小聪至少答对了1道题,故答案为:1.【点睛】本题主要考查一元一次不等式的应用,列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.18、【分析】根据无理数的定义:无理数,也称为无限不循环小数,不能写作两整数之比,即可判定.【详解】由已知,得其中为无理数的是,故答案为.【点睛】此题主要考查对无理数的理解,熟知概念,即可解题.三、解答题(共66分)19、(1)①画图见解析;②75°;(2)AB=BE+BD,证明见解析.【分析】(1)①根据题意直接画出图形;②根据对称性判断出AB⊥DE,再判断出∠DAE=60°,可以求出∠BAC,即可得出结论;(2)先判断出∠ADF=∠EDB,进而判断出△BDE≌△FDA,即可得出结论.【详解】解:(1)①根据题意,补全图形如图所示,②当点D与点E关于直线AB轴对称时,∴AB⊥DE,∵△ADE是等边三角形,AB⊥DE,∴∠DAE=60°,AD=AE,∴∠BAC=∠DAE=30°,∵AB=AC,∴∠ACB=(180°-∠BAC)=75°,故答案为75°;(2)AB=BE+BD,证明如下:如图,在BA上取一点F,使BF=BD,DE与AB的交于H,∵△ADE是等边三角形,∴AD=ED,∠EAD=∠AED=60°,在△ABC中,AB=AC,∠ACB=80°,∴∠ABC=∠ACB=80°,∴∠BAC=180°-∠ACB-∠ABC=20°,∴∠BAE=∠DAE-∠BAC=40°,在△BCD中,BC=BD,∴∠BDC=∠ACB=80°,∴∠DBC=180°-∠ACB-∠BDC=20°,∴∠ABD=∠ABC-∠DBC=60°,∵BF=BD,∴△BDF是等边三角形,∵∠AED=∠ABD=60°,∠AHE=∠BHD,∴∠BDE=∠BAE=40°,∴∠BDF=60°,BD=FD=BF,∴∠ADF=180°-∠BDC-∠BDF=40°=∠ADF,又∵DE=AD,∴△BDE≌△FDA(SAS),∴FA=BE,∴BA=BF+FA=BD+BE.【点睛】本题主要考查了轴对称的性质,三角形的内角和定理,等腰三角形的判定和性质,全等三角形的判定和性质,正确做出辅助线,构造出全等三角形是解本题的关键.20、x+2;当x=1时,原式=1.【分析】先把分子分母因式分解,约分,再计算括号内的减法,最后算除法,约分成最简分式或整式;再选择使分式有意义的数代入求值即可.【详解】解:=x+2,
∵x2-4≠0,x-1≠0,
∴x≠2且x≠-2且x≠1,
∴可取x=1代入,原式=1.【点睛】本题主要考查分式的化简求值,熟悉掌握分式的运算法则是解题的关键,注意分式有意义的条件.21、(1)见解析;(2)【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和得出∠3+∠CAE=∠DEF,再根据∠1=∠3整理即可得证;
(2)根据三角形的一个外角等于与它不相邻的两个内角的和得出∠2+∠BCF=∠DFE,再根据∠2=∠3即可得∠ACB=∠DFE,然后利用三角形的内角和等于180°求解即可.【详解】(1)证明:在△ACE中,∠DEF=∠3+∠CAE,∵∠1=∠3,∴∠DEF=∠1+∠CAE=∠BAC,即∠BAC=∠DEF;(2)解:在△BCF中,∠DFE=∠2+∠BCF,∵∠2=∠3,∴∠DFE=∠3+∠BCF,即∠DFE=∠ACB,∵∠BAC=70°,∠DFE=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠ACB=180°-70°-50°=60°.【点睛】本题主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质,并准确识图,找出图中各角度之间的关系是解题的关键.22、(1)26°(2)12°(3)【分析】(1)根据评价分析的定义求出∠ABC即可解决问题.(2)根据∠DAE=∠BAE−∠BAD,求出∠BAE即可解决问题.(3)根据补角的定义即可求解.【详解】(1)∵BF平分∠ABC,∴∠ABC=2∠CBF=64°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°−64°=26°,(2)∵∠AFB=∠FBC+∠C,∴∠C=72°−32°=40°,∵∠BAC=180°−∠ABC−∠C=180°−64°−40°=76°,∵AE平分∠BAC,∴∠BAE=∠BAC=38°,∴∠DAE=∠BAE−∠BAD=38°−26°=12°.(3)∵∴=180°-.【点睛】本题考查三角形内角和定理,三角形的外角的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)4;(2)6;(3)1.6;(4)乙将被选中,详见解析【分析】(1)根据两人的总成绩相同,进而求出a的值;(2)根据平均数的计算方法即可;
(3)直接利用方差公式求出即可;
(4)利用平均数以及方差的意义分析得出即可.【详解】解:(1)∵两人各射了5箭,他们的总成绩相同,
甲的总成绩为:9+4+7+4+6=30;∴乙的总成绩为:7+5+7+a+7=30,解得:a=4,
(2)由(1)可知:×30=6,
(3)=[(7−6)2+(5−6)2+(7−6)2+(4−6)2+(7−6)2]=1.6;
(4)因为两人成绩的平均水平(平均数)相同,由于,所以乙的成绩比甲稳定,所以乙将被选中.【点睛】此题主要考查了平均数以及方差的求法和意义等知识,正确记忆方差公式是解题关键.24、(1)图见解析,A1的坐标为(﹣2,﹣1)、B1的坐标为(2,﹣3);(2)图见解析,点C坐标为(﹣1,0)【分析】(1)分别作出点A、B关于x轴的对称点,再连接即可得;(2)连接,与x轴的交点即为所求;再根据点坐标、以及等腰直角三角形的判定与性质可求出OC的长,从而可得点C坐标.【详解】(1)如图所示,即为所求:由点关于x轴对称的坐标变换规律:横坐标不变,纵坐标变为相反数的坐标为,的坐标为;(2)由轴对称的性质得:则要使的值最小,只需的值最小由两点之间线段最短得:的值最小值为因此,连接,与x轴的交点即为所求的点C,如图所示:则是等腰直角三角形,是等腰直角三角形故点C坐标为【点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非关系型数据库知识试题及答案
- 技能培训总结范文(15篇)
- 联网设备配置与管理试题及答案
- 树木买卖合同集锦(16篇)
- 交通银行郑州分行网上企业银行服务协议(13篇)
- 人工智能教育辅助软件知识产权保护合同
- 电子商务网站建设试题
- 行政组织理论的基础原则解析试题及答案
- 环视2025年行政组织理论考试的多元试题与答案
- 数据库开发时常见的误区试题及答案
- 骨科专业疾病临床诊疗规范2025年版
- 上海市徐汇区2023-2024学年八年级下学期期末语文试题(解析版)
- 2025雅安事业单位笔试真题
- 端午节文化传承课件
- 儿童轮状病毒胃肠炎免疫预防专家共识(2024年版)解读
- 经济学习题含参考答案解析
- 检验危急值在急危重病临床应用的专家共识
- BIM技术在建筑行业工程项目施工质量改进与持续改进报告
- 2025-2030中国旅游行业现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 四川省成都市青羊区2024年中考语文二模试卷(含答案)
- 《贵州省安全生产风险分级管控和隐患排查治理“双控”体系建设实施指南(2018年试行)》
评论
0/150
提交评论