2023届福建省龙岩市永定区数学八上期末教学质量检测试题含解析_第1页
2023届福建省龙岩市永定区数学八上期末教学质量检测试题含解析_第2页
2023届福建省龙岩市永定区数学八上期末教学质量检测试题含解析_第3页
2023届福建省龙岩市永定区数学八上期末教学质量检测试题含解析_第4页
2023届福建省龙岩市永定区数学八上期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在,0,,﹣,0.1010010001…(相邻两个1之间的0的个数逐渐增加1)这六个数中,无理数的个数共有()A.2个 B.3个 C.4个 D.5个2.一个多边形的内角和是720°,则这个多边形的边数是()A.8 B.9 C.6 D.113.“某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x米,则可得方程.”根据此情境,题中用“×××××”表示得缺失的条件,应补为()A.每天比原计划多铺设10米,结果延期20天才完成任务B.每天比原计划少铺设10米,结果延期20天才完成任务C.每天比原计划多铺设10米,结果提前20天完成任务D.每天比原计划少铺设10米,结果提前20天完成任务4.不等式组的解集是x>1,则m的取值范围是()A.m≥1 B.m≤1 C.m≥0 D.m≤05.下列二次根式中,与是同类二次根式的是()A. B. C. D.6.如图是边长为10的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:)不正确的()A. B.C. D.7.若分式,则的值为()A.1 B.2 C.3 D.48.估计+1的值()A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间9.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO∶S△BCO∶S△CAO等于()

A.1∶1∶1 B.1∶2∶3 C.2∶3∶4 D.3∶4∶510.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA二、填空题(每小题3分,共24分)11.将一副三角板如图叠放,则图中∠α的度数为______.12.如图,在□中,过点,与的延长线交于,,,则□的周长为__________.13.已知,且,,,…,,请计算__________(用含在代数式表示).14.如图,点、、都是数轴上的点,点、关于点对称,若点、表示的数分别是2,,则点表示的数为____________.15.如图,在△ABC中,∠C=46°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是_____.16.因式分解:__.17.如图,已知,,按如下步骤作图:(1)分别以、为圆心,以大于的长为半径在两边作弧,交于两点、;(2)经过、作直线,分别交、于点、;(3)过点作交于点,连接、.则下列结论:①、垂直平分;②;③平分;④四边形是菱形;⑤四边形是菱形.其中一定正确的是______(填序号).18.如图,在长方形ABCD中,AB=2,BC=4,点P在AD上,若△PBC为直角三角形,则CP的长为_____.三、解答题(共66分)19.(10分)小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.20.(6分)探索与证明:(1)如图1,直线经过正三角形的项点,在直线上取两点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并子以证明:(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.21.(6分)某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?22.(8分)在一棵树的10米高处有两只猴子,其中一只猴子爬下树走到离树20米的池塘,另一只猴子爬到树顶后直接跃向池塘的处,如果两只猴子所经过距离相等,试问这棵树有多高.23.(8分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.(1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?24.(8分)我们学过的分解因式的方法有提取公因式法、公式法及十字相乘法,但有很多的多项式只用上述方法就无法分解,如,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:;这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式:(2)三边,,满足,判断的形状.25.(10分)如图,直线分别与轴,轴交于点,,过点的直线交轴于点.为的中点,为射线上一动点,连结,,过作于点.(1)直接写出点,的坐标:(______,______),(______,______);(2)当为中点时,求的长;(3)当是以为腰的等腰三角形时,求点坐标;(4)当点在线段(不与,重合)上运动时,作关于的对称点,若落在轴上,则的长为_______.26.(10分)为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查。根据调查结果绘制了如下尚不完整的统计图.根据以上信息解答下列问题.(1)这次接受调查的市民总人数是_________.(2)扇形统计图中,“电视”所对应的圆心角的度数是_________.(3)请补全条形统计图.(4)若该市约有80万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.

参考答案一、选择题(每小题3分,共30分)1、A【解析】根据无理数的定义对每个数进行判断即可.【详解】在,1,,﹣,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)这六个数中,无理数有:,1.1111111111…(相邻两个1之间的1的个数逐渐增加1)共2个.故选:A.【点睛】本题考查了无理数的定义,掌握无理数的定义以及判定方法是解题的关键.2、C【分析】根据多边形内角和公式可直接进行求解.【详解】解:由题意得:,解得:;故选C.【点睛】本题主要考查多边形内角和,熟记多边形内角和公式是解题的关键.3、C【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x米,那么x+10就应该是实际每天比原计划多铺了10米,而用则表示用原计划的时间﹣实际用的时间=20天,那么就说明每天比原计划多铺设10米,结果提前20天完成任务.故选:C.【点睛】本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.4、D【分析】表示出不等式组中两不等式的解集,根据已知不等式组的解集确定出m的范围即可.【详解】解:不等式整理得:,由不等式组的解集为x>1,得到m+1≤1,解得:m≤0.故选D.【点睛】本题考查了不等式组的解集的确定.5、C【分析】同类二次根式定义为几个二次根式化简成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.【详解】符合定义的只有C项,所以答案选择C项.【点睛】本题考查了同类二次根式的定义,熟练掌握定义是解答本题的关键.6、A【解析】试题分析:正方形的对角线的长是,所以正方形内部的每一个点,到正方形的顶点的距离都有小于14.14,故答案选A.考点:正方形的性质,勾股定理.7、D【分析】首先将已知分式通分,得出,代入所求分式,即可得解.【详解】∵∴∴∴=故选:D.【点睛】此题主要考查分式的求值,利用已知分式的值转换形式,即可解题.8、C【解析】∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选C.9、C【分析】由于三角形的三条角平分线的交点为三角形的内心,则点O为△ABC的内心,又知点O到三边的距离相等,即三个三角形的高相等,利用三角形的面积公式知,三个三角形的面积之比即为对应底边之比.【详解】解:由题意知,点O为△ABC的内心,则点O到三边的距离相等,设距离为r,则S△ABO=AB·r,S△BCO=BC·r,S△CAO=AC·r,∴S△ABO∶S△BCO∶S△CAO=AB·r:BC·r:AC·r=AB:BC:AC=20:30:40=2:3:4,故选:C.【点睛】本题考查三角形的角平分线的性质、三角形的内心、三角形的面积公式,关键是熟知三角形的三条角平分线相交于一点,这一点是该三角形的内心.10、D【详解】试题分析:△ABC和△CDE是等边三角形BC=AC,CE=CD,即在△BCD和△ACE中△BCD≌△ACE故A项成立;在△BGC和△AFC中△BGC≌△AFCB项成立;△BCD≌△ACE,在△DCG和△ECF中△DCG≌△ECFC项成立D项不成立.考点:全等三角形的判定定理.二、填空题(每小题3分,共24分)11、15°.【解析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.12、1【分析】根据平行四边形性质求出DC=AB,AD=BC,DC∥AB,根据平行线性质求出∠M=∠MDA,求出AM=AD,根据平行四边形周长等于2BM,即可求出答案.【详解】∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,DC∥AB,∴∠NDC=∠M,∵∠NDC=∠MDA,∴∠M=∠MDA,∴AM=AD,∵,∴平行四边形周长为2(AB+AD)=2(AB+AM)=2BM=1故答案为:1.【点睛】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的能力,题目比较好,难度也适中.13、【分析】首先将代入,用表示出,以此类推,进一步表示出、,最后根据计算结果得出循环规律,据此进一步求解即可.【详解】∵,∴,,,由此可得,是以、、依次循环,∵,∴,故答案为:.【点睛】本题主要考查了分式的运算,准确找出循环规律是解题关键.14、4-【分析】先求出线段AB的长度,根据对称点的关系得到AC=AB,即可利用点A得到点C所表示的数.【详解】∵点、表示的数分别是2,,∴AB=-2,∵点、关于点对称,∴AC=AB=-2,∴点C所表示的数是:2-(-2)=4-,故答案为:4-.【点睛】此题考查数轴上两点间的距离公式,对称点的关系,点的平移规律,利用点的对称关系得到AC的长度是解题的关键.15、92°.【分析】由折叠的性质得到∠D=∠C,再利用外角性质即可求出所求角的度数.【详解】由折叠的性质得:∠C'=∠C=46°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠C',则∠1=∠2+∠C+∠C'=∠2+2∠C=∠2+92°,则∠1﹣∠2=92°.故答案为92°.【点睛】考查翻折变换(折叠问题),三角形内角和定理,熟练掌握折叠的性质是解题的关键.16、【分析】利用十字相乘法因式分解即可.【详解】解:故答案为:.【点睛】此题考查的是因式分解,掌握利用十字相乘法因式分解是解决此题的关键.17、①②④【分析】根据题意可知:MN是AC的垂直平分线,①正确;可得AD=CD,AE=CE,然后由CE∥AB,可证得CD∥AE,则四边形ADCE是平行四边形,然后得出,②正确;继而证得四边形ADCE是菱形,④正确.【详解】解:∵分别以A、C为圆心,以大于的长为半径在AC两边作弧,交于两点M、N,

∴MN是AC的垂直平分线,①正确;

∴AD=CD,AE=CE,

∴∠CAD=∠ACD,∠CAE=∠ACE,

∵CE∥AB,

∴∠CAD=∠ACE,

∴∠ACD=∠CAE,

∴CD∥AE,

∴四边形ADCE是平行四边形,∴,②正确;

∴四边形ADCE是菱形,④正确;∴,,∵,∴,又∵∴四边形是平行四边形,若四边形是菱形,即,若平分,即,题中未限定这两个条件,∴③⑤不一定正确,故答案为:①②④.【点睛】本题考查了作图−复杂作图,线段垂直平分线的性质,菱形的判定与性质,平行线的判定与性质.此题难度适中,注意掌握数形结合思想的应用.18、1或1或1【分析】分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得CP=;②当∠BPC=90°时,由勾股定理得11+AP1+11+(4﹣AP)1=16,求出AP=1,DP=1,由勾股定理得出CP=;③当∠BCP=90°时,P与D重合,CP=CD=1.【详解】解:∵四边形ABCD是矩形,∴AB=CD=1,AD=BC=4,∠A=∠ABC=∠BCD=∠D=90°,分情况讨论:①当∠PBC=90°时,P与A重合,由勾股定理得:CP=;②当∠BPC=90°时,由勾股定理得:BP1=AB1+AP1=11+AP1,CP1=CD1+DP1=11+(4﹣AP)1,BC1=BP1+CP1=41,∴11+AP1+11+(4﹣AP)1=16,解得:AP=1,∴DP=1,∴CP=;③当∠BCP=90°时,P与D重合,CP=CD=1;综上所述,若△PBC为直角三角形,则CP的长为或或1;故答案为:1或1或1.【点睛】本题考查了矩形的性质、勾股定理、解一元二次方程以及分类讨论等知识;熟练掌握勾股定理和分类讨论是解题的关键.三、解答题(共66分)19、(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤;(3)两人相遇时间为第8分钟.【分析】(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.【详解】解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x,0≤x≤;(3)第8分钟.【点睛】本题考查了一次函数的应用,解决本题的关键是能从函数的图象中获取相关信息.20、(1)猜想:.证明见解析;(2)猜想:.证明见解析.【分析】(1)应用AAS证明△DAB≌△ECA,则有AD=CE,BD=AE,问题可解(2)AAS证明△DAB≌△ECA则有AD=CE,BD=AE,问题可解.【详解】(1)猜想:.证明:由已知条件可知:,,在和中,,,.,.(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图2的位置,并使,.(2)猜想:.证明:由已知条件可知:,,.在和中,,,.,.【点睛】本题考查全等三角形的性质与AAS判定三角形全等,解答关键是根据题意找到需要证明的全等三角形.21、(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【点睛】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、树高为15m.【分析】设树高BC为xm,则可用x分别表示出AC,利用勾股定理可得到关于x的方程,可求得x的值.【详解】解:设树高BC为xm,则CD=x-10,则题意可知BD+AB=10+20=30,∴AC=30-CD=30-(x-10)=40-x,∵△ABC为直角三角形,∴AC2=AB2+BC2,即(40-x)2=202+x2,解得x=15,即树高为15m,【点睛】本题主要考查勾股定理的应用,用树的高度表示出AC,利用勾股定理得到方程是解题的关键.23、(1);(2)原分式方程中“?”代表的数是-1.【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以得解得经检验,是原分式方程的解.(2)设?为,方程两边同时乘以得由于是原分式方程的增根,所以把代入上面的等式得所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:

①化分式方程为整式方程;

②把增根代入整式方程即可求得相关字母的值.24、(1);(2)是等腰三角形,理由见解析【分析】(1)首先将前三项组合,利用完全平方公式分解因式,进而利用平方差公式分解因式得出即可;(2)首先将前两项以及后两项组合,进而提取公因式法分解因式,即可得出a,b,c的关系,判断三角形形状即可.【详解】解:(1)=(2)∵∴∴∴或,∴是等腰三角形.【点睛】此题主要考查了分组分解法分解因式以及等腰三角形的判定,正确分组分解得出是解题关键.25、(1)-2,0;2,0;(2);(3)当或时,是以为腰的等腰三角形;(4).【分析】(1)先根据求出A,B的坐标,再把B点坐标代入求出b值,即可求解C点坐标,再根据为的中点求出D点坐标;(2)先求出P点坐标得到,再根据即可求解;(3)根据题意分①②,即可列方程求解;(4)根据题意作图,可得对称点即为A点,故AD=PD=4,设,作PF⊥AC于F点,得DF=2-x,PF=-x+4,利用Rt△PFD列方程解出x,得到P点坐标,再根据坐标间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论