2023届山东省潍坊市昌乐县数学八上期末达标检测模拟试题含解析_第1页
2023届山东省潍坊市昌乐县数学八上期末达标检测模拟试题含解析_第2页
2023届山东省潍坊市昌乐县数学八上期末达标检测模拟试题含解析_第3页
2023届山东省潍坊市昌乐县数学八上期末达标检测模拟试题含解析_第4页
2023届山东省潍坊市昌乐县数学八上期末达标检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是02.若一个正数的平方根为2a+1和2-a,则a的值是()A. B.或-3 C.-3 D.33.若分式有意义,则的取值范围是()A. B. C. D.且4.计算的结果是()A. B. C. D.5.要使二次根式有意义,字母的取值范围是()A.x≥ B.x≤ C.x> D.x<6.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.107.小明想用一长方形的硬纸片折叠成一个无盖长方体收纳盒,硬纸片长为a+1,宽为a-1,如图,在硬纸片的四角剪裁出4个边长为1的正方形,沿着图中虚线折叠,这个收纳盒的体积是()A.a2-1 B.a2-2a C.a2-1 D.a2-4a+38.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个 B.2个 C.3个 D.4个9.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有()A.6个 B.7个 C.8个 D.9个10.以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD11.已知等腰三角形的周长为16,其中一边长为3,则该等腰三角形的腰长为()A.3 B.10 C.6.5 D.3或6.512.下列语句不属于命题的是()A.直角都等于90° B.两点之间线段最短C.作线段AB D.若a=b,则a2=b2二、填空题(每题4分,共24分)13.如图:点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为___________.14.三角形两边长分别是2,4,第三边长为偶数,第三边长为_______15.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,AK=BN,若∠MKN=44°,则∠P的度数为________.16.在如图所示的长方形中放置了8个大小和形状完全相同的小长方形,设每个小长方形的长为x,宽为y,根据图中提供的数据,列方程组_______.17.如图,以AB为斜边的Rt△ABC的每条边为边作三个正方形,分别是正方形ABMN,正方形BCPQ,正方形ACEF,且边EF恰好经过点N.若S3=S4=5,则S1+S5=_____.(注:图中所示面积S表示相应封闭区域的面积,如S3表示△ABC的面积)18.已知:如图,、都是等腰三角形,且,,,、相交于点,点、分别是线段、的中点.以下4个结论:①;②;③是等边三角形;④连,则平分以上四个结论中正确的是:______.(把所有正确结论的序号都填上)三、解答题(共78分)19.(8分)如图,已知和点、求作一点,使点到、的距离相等且.请作出点.(用直尺、圆规作图,不写作法,保留作图痕迹)20.(8分)如图,,,,,垂足分别为,,,,求的长.21.(8分)“天生雾、雾生露、露生耳”,银耳是一种名贵食材,富含人体所需的多种氨基酸和微量元素,具有极高的药用价值和食用价值.某银耳培育基地的银耳成熟了,需要采摘和烘焙.现准备承包给甲和乙两支专业采摘队,若承包给甲队,预计12天才能完成,为了减小银耳因气候变化等原因带来的损失,现决定由甲、乙两队同时采摘,则可以提前8天完成任务.(1)若单独由乙队采摘,需要几天才能完成?(2)若本次一共采摘了300吨新鲜银耳,急需在9天内进行烘焙技术处理.已知甲、乙两队每日烘焙量相当,甲队单独加工(烘焙)天完成100吨后另有任务,剩下的200吨由乙队加工(烘焙),乙队刚好在规定的时间内完工.若甲、乙两队从采摘到加工,每日工资分别是600元和1000元.问:银耳培育基地此次需要支付给采摘队的总工资是多少?22.(10分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.23.(10分)把下列多项式分解因式:(1);(2)(3);(4).24.(10分)请阅读下列材料,并完成相应的任务.任务:(1)利用上述方法推导立方和公式(从左往右推导);(2)已知,求的值.25.(12分)如图,在△ABC中,∠A=30°,∠B=60°(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE,求证:△ADE≌△BDE.26.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.

参考答案一、选择题(每题4分,共48分)1、B【解析】分析:直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.详解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.点睛:此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.2、C【分析】根据一个正数的平方根有2个,且互为相反数列出方程,求出方程的解即可得到a的值.【详解】∵一个正数的平方根为2a+1和2-a∴2a+1+2-a=0解得a=-3故选:C【点睛】本题考查了平方根的性质,正数有两个平方根,它们互为相反数.3、D【解析】∵分式有意义,∴,∴且,解得且.故选D.4、C【解析】根据同底数幂的运算法则,底数不变,指数相加计算即可.【详解】,故选:C.【点睛】考查了同底数幂的运算法则,熟记同底数的运算法则是解题的关键.5、B【解析】二次根式的被开方数应为非负数,列不等式求解.【详解】由题意得:1-2x≥0,解得x≤,故选B.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.6、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【点睛】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.7、D【分析】根据图形,表示出长方体的长、宽、高,根据多项式乘以多项式的法则,计算即可.【详解】解:依题意得:无盖长方体的长为:a+1-2=a-1;无盖长方体的宽为:a-1-2=a-3;无盖长方体的高为:1∴长方体的体积为故选:D【点睛】本题主要考查多项式乘以多项式,熟记多项式乘以多项式的法则是解决此题的关键,此类问题中还要注意符号问题.8、D【解析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.9、A【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【详解】如图:分情况讨论:①AB为等腰直角△ABC底边时,符合条件的C点有2个;②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点睛】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.10、C【解析】试题分析:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOB和△COD中,,∴△AOB≌△COD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选C.考点:平行线的判定.11、C【分析】分腰长为3和底边长为3两种情况,注意用三角形三边关系验证.【详解】若腰长为3,则底边长为此时三边长为3,3,10∵,不能组成三角形∴腰长为3不成立,舍去若底边长为3,则腰长为此时三角形三边长为6.5,6.5,3,满足三角形三边关系所以等腰三角形的腰长为6.5故选:C.【点睛】本题主要考查等腰三角形的定义及三角形三边关系,掌握三角形三边关系并分情况讨论是解题的关键.12、C【分析】根据命题的定义对四个选项进行逐一分析即可.【详解】解:A、正确,对直角的性质作出了判断,故不符合题意;B、正确,两点之间,线段最短,作出了判断,故不符合题意;C、错误,是叙述一件事,没作出任何判断,故符合题意;D、正确,对a2和b2的关系作了判断,故不符合题意;故选C.【点睛】本题考查的是命题的定义,即判断一件事情的语句叫命题.二、填空题(每题4分,共24分)13、15【分析】P点关于OB的对称是点P1,P点关于OA的对称点P2,由轴对称的性质则有PM=P1M,PN=P2N,继而根据三角形周长公式进行求解即可.【详解】∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴OB垂直平分PP1,OA垂直平分PP2,∴PM=P1M,PN=P2N,∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15,故答案为:15.【点睛】本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.14、2【解析】试题解析:设第三边为a,根据三角形的三边关系知,2-1<a<2+1.即1<a<6,由周长为偶数,则a为2.15、92°.【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可.【详解】解:∵PA=PB,

∴∠A=∠B,

在△AMK和△BKN中,∴△AMK≌△BKN,

∴∠AMK=∠BKN,

∵∠MKB=∠MKN+∠NKB=∠A+∠AMK,

∴∠A=∠MKN=44°,

∴∠P=180°-∠A-∠B=92°,故答案为92°.【点睛】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键.16、【分析】设小长方形的长为x,宽为y,根据长方形ABCD的长为17,宽的两种不同的表达式列出方程组即可得解;【详解】解:设小长方形的长为x,宽为y,根据题意得:,整理得:;故答案为:【点睛】本题考查了二元一次方程组的应用,根据图形,找到合适的等量关系列出方程组是解题的关键.17、1【分析】如图,连接MQ,作MG⊥EC于G,设PC交BM于T,MN交EC于R.证明△ABC≌△MBQ(SAS),推出∠ACB=∠BQM=90°,由∠PQB=90°,推出M,P,Q共线,由四边形CGMP是矩形,推出MG=PC=BC,证明△MGR≌△BCT(AAS),推出MR=BT,由MN=BM,NR=MT,可证△NRE≌MTP,推出S1+S1=S3=1.【详解】解:如图,连接MQ,作MG⊥EC于G,设PC交BM于T,MN交EC于R.∵∠ABM=∠CBQ=90°,∴∠ABC=∠MBQ,∵BA=BM,BC=BQ,∴△ABC≌△MBQ(SAS),∴∠ACB=∠MQB=90°,∵∠PQB=90°,∴M,P,Q共线,∵四边形CGMP是矩形,∴MG=PC=BC,∵∠BCT=∠MGR=90°,∠BTC+∠CBT=90°,∠BQM+∠CBT=90°,∴∠MRG=∠BTC,∴△MGR≌△BCT(AAS),∴MR=BT,∵MN=BM,∴NR=MT,∵∠MRG=∠BTC,∴∠NRE=∠MTP,∵∠E=∠MPT=90°,则△NRE≌MTP(AAS),∴S1+S1=S3=1.故答案为:1.【点睛】本题考查全等三角形的判定和性质、矩形的性质,解题的关键是三组三角形全等,依次为:△ABC≌△MBQ,△MGR≌△BCT,△NRE≌MTP.18、①②④【分析】①根据全等三角形的判定定理得到△ACD≌△BCE(SAS),由全等三角形的性质得到AD=BE;故①正确;

②设CD与BE交于F,根据全等三角形的性质得到∠ADC=∠BEC,得到∠DOE=∠DCE=α,根据平角的定义得到∠BOD=180°−∠DOE=180°−α,故②正确;

③根据全等三角形的性质得到∠CAD=∠CBE,AD=BE,AC=BC根据线段的中点的定义得到AM=BN,根据全等三角形的性质得到CM=CN,∠ACM=∠BCN,得到∠MCN=α,推出△MNC不一定是等边三角形,故③不符合题意;

④过C作CG⊥BE于G,CH⊥AD于H,根据全等三角形的性质得到CH=CG,根据角平分线的判定定理即可得到OC平分∠AOE,故④正确.【详解】解:①∵CA=CB,CD=CE,∠ACB=∠DCE=α,

∴∠ACB+∠BCD=∠DCE+∠BCD,

∴∠ACD=∠BCE,

在△ACD和△BCE中,

∴△ACD≌△BCE(SAS),

∴AD=BE;故①正确;

②设CD与BE交于F,

∵△ACD≌△BCE,

∴∠ADC=∠BEC,

∵∠CFE=∠DFO,

∴∠DOE=∠DCE=α,

∴∠BOD=180°−∠DOE=180°−α,故②正确;

③∵△ACD≌△BCE,

∴∠CAD=∠CBE,AD=BE,AC=BC

又∵点M、N分别是线段AD、BE的中点,

∴AM=AD,BN=BE,

∴AM=BN,

在△ACM和△BCN中,

∴△ACM≌△BCN(SAS),

∴CM=CN,∠ACM=∠BCN,

又∠ACB=α,

∴∠ACM+∠MCB=α,

∴∠BCN+∠MCB=α,

∴∠MCN=α,

∴△MNC不一定是等边三角形,故③不符合题意;

④如图,过C作CG⊥BE于G,CH⊥AD于H,

∴∠CHD=∠ECG=90°,∵∠CEG=∠CDH,CE=CD,

∴△CGE≌△CHD(AAS),

∴CH=CG,

∴OC平分∠AOE,故④正确,

故答案为①②④.【点睛】本题综合考查了全等三角形的性质和判定,三角形的内角和定理,等边三角形的性质和判定等知识点的应用,解此题的关键是根据性质进行推理,此题综合性比较强,有一定的代表性.三、解答题(共78分)19、答案见解析【分析】作出∠ECD的平分线,线段AB的垂直平分线,两线的交点就是P点.【详解】解:如图所示:点P为所求.【点睛】此题主要考查了复杂作图,解答此题要明确两点:(1)角平分线上的点到角的两边的距离相等;(2)线段垂直平分线上的点到线段两端点的距离相等.20、1【分析】根据等角的余角相等可得∠DCA=∠EBC,然后利用AAS证出△DCA≌△EBC,从而得出DC=EB,AD=CE=3,即可求出的长.【详解】解:∵,,∴∠ADC=∠CEB=∴∠DCA+∠ECB=90°,∠EBC+∠ECB=90°∴∠DCA=∠EBC在△DCA和△EBC中∴△DCA≌△EBC∴DC=EB,AD=CE=3∵∴DC=CE-DE=1∴=1【点睛】此题考查的是全等三角形的判定及性质,掌握利用AAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.21、(1)乙队单独需要6天才能完成;(2)银耳培育基地此次需要支付给采摘队的总工资14200元【分析】(1)设乙队单独需要天才能完成,根据题意列出分式方程即可求解;(2)根据甲队单独加工(烘焙)天完成100吨后另有任务,剩下的200吨由乙队加工(烘焙),乙队刚好在规定的时间内完工可列出分式方程求出x,即可得到总工资.【详解】解:(1)设乙队单独需要天才能完成,根据题意可有:解得经检验,是原方程的解∴单独由乙队采摘,需要6天才能完成;(2)根据题意有:解得经检验,是原方程的解∴甲加工了3天,乙加工了6天∴总费用为:元答:乙队单独需要6天才能完成任务;银耳培育基地此次需要支付给采摘队的总工资14200元.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系列出方程求解.22、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【详解】(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为C;(2)错误的原因为:没有考虑a=b的情况,故答案为没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为△ABC是等腰三角形或直角三角形.【点睛】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.23、(1);(2);(3);(4)【分析】(1)提公因式后,再利用平方差公式继续分解即可;(2)整理后利用完全平方公式分解即可;(3)提公因式后,再利用完全平方公式继续分解即可;(4)提公因式后,再利用平方差公式继续分解即可.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论