高考数学一轮复习第2章基本初等函数导数及其应用第10讲函数模型及其应用知能训练轻松闯关文北师大版_第1页
高考数学一轮复习第2章基本初等函数导数及其应用第10讲函数模型及其应用知能训练轻松闯关文北师大版_第2页
高考数学一轮复习第2章基本初等函数导数及其应用第10讲函数模型及其应用知能训练轻松闯关文北师大版_第3页
高考数学一轮复习第2章基本初等函数导数及其应用第10讲函数模型及其应用知能训练轻松闯关文北师大版_第4页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGE第10讲函数模型及其应用1.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y与投放市场的月数x之间关系的是()A.y=100x B.y=50x2-50x+100C.y=50×2x D.y=100log2x+100解析:选C.根据函数模型的增长差异和题目中的数据可知,应为指数函数模型.2.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C与时间t(年)的函数关系图像正确的是()解析:选A.前3年年产量的增长速度越来越快,说明呈高速增长,只有A、C图像符合要求,而后3年年产量保持不变,故选A.3.将甲桶中的a升水缓慢注入空桶乙中,t分钟后甲桶中剩余的水量符合指数衰减曲线y=aent.若5分钟后甲桶和乙桶的水量相等,又过了m分钟后甲桶中的水只有eq\f(a,8)升,则m的值为()A.7 B.8C.9 D.10解析:选D.令eq\f(1,8)a=aent,即eq\f(1,8)=ent,由已知得eq\f(1,2)=e5n,故eq\f(1,8)=e15n,比较知t=15,m=15-5=10.4.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x,y应为()A.x=15,y=12 B.x=12,y=15C.x=14,y=10 D.x=10,y=14解析:选A.由三角形相似得eq\f(24-y,24-8)=eq\f(x,20).得x=eq\f(5,4)(24-y),所以S=xy=-eq\f(5,4)(y-12)2+180,所以当y=12时,S有最大值,此时x=15.5.(2016·长春联合测试)某位股民购进某只股票,在接下来的交易时间内,他的这只股票先经历了n次涨停(每次上涨10%),又经历了n次跌停(每次下跌10%),则该股民这只股票的盈亏情况(不考虑其他费用)为()A.略有盈利 B.略有亏损C.没有盈利也没有亏损 D.无法判断盈亏情况解析:选B.设该股民购这只股票的价格为a,则经历n次涨停后的价格为a(1+10%)n=a×1.1n,经历n次跌停后的价格为a×1.1n×(1-10%)n=a×1.1n×0.9n=a×(1.1×0.9)n=0.99n·a<a,故该股民这只股票略有亏损.6.(2016·安阳模拟)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品,则获得利润最大时生产产品的档次是________.解析:由题意,第k档次时,每天可获利润为:y=[8+2(k-1)][60-3(k-1)]=-6k2+108k+378(1≤k≤10,k∈N),配方可得y=-6(k-9)2+864,所以当k=9时,获得利润最大.答案:97.某人根据经验绘制了2016年元旦前后,从12月21日至1月7日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图像,如图所示,则此人在12月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系式,设为y=kx+b,将点(1,10)和点(10,30)代入函数解析式得eq\b\lc\{(\a\vs4\al\co1(10=k+b,,30=10k+b,))解得k=eq\f(20,9),b=eq\f(70,9),所以y=eq\f(20,9)x+eq\f(70,9),则当x=6时,y=eq\f(190,9).答案:eq\f(190,9)8.某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月份至十月份销售总额至少达7000万元,则x的最小值是__________.解析:七月份:500(1+x%),八月份:500(1+x%)2.所以一至十月份的销售总额为:3860+500+2[500(1+x%)+500(1+x%)2]≥7000,解得1+x%≤-2.2(舍)或1+x%≥1.2,所以xmin=20.答案:209.(2016·中山模拟)围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙长度为xm,(1)将y表示为x的函数;(2)试确定x,使修建此矩形场地围墙的总费用最少,并求出最少总费用.解:(1)如图,设矩形中与旧墙垂直的边长为am,则y=45x+180(x-2)+180·2a=225x+360由已知得xa=360,得a=eq\f(360,x).所以y=225x+eq\f(3602,x)-360(x>2).(2)因为x>2,所以225x+eq\f(3602,x)≥2eq\r(225×3602)=10800.所以y=225x+eq\f(3602,x)-360≥10440.当且仅当225x=eq\f(3602,x)时,等号成立.即当x=24时,修建围墙的总费用最少,最少总费用是10440元.1.已知正方形ABCD的边长为4,动点P从B点开始沿折线BCDA向A点运动.设点P运动的路程为x,△ABP的面积为S,则函数S=f(x)的图像是()解析:选D.依题意知当0≤x≤4时,f(x)=2x;当4<x≤8时,f(x)=8;当8<x≤12时,f(x)=24-2x,观察四个选项知答案为D.2.经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=eq\f(1,2)t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).(1)写出该种商品的日销售额S与时间t的函数关系;(2)求日销售额S的最大值.解:(1)根据题意,得S=eq\b\lc\{(\a\vs4\al\co1((-2t+200)\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)t+30)),1≤t≤30,t∈N,,45(-2t+200),31≤t≤50,t∈N))=eq\b\lc\{(\a\vs4\al\co1(-t2+40t+6000,1≤t≤30,t∈N,,-90t+9000,31≤t≤50,t∈N.))(2)①当1≤t≤30,t∈N时,S=-(t-20)2+6400,所以当t=20时,S的最大值为6400.②当31≤t≤50,t∈N时,S=-90t+9000为减函数,所以当t=31时,S的最大值为6210.因为6210<6400,所以当t=20时,日销售额S有最大值6400.3.候鸟每年都要随季节的变化而进行大规模地迁徙,研究某种鸟类的专家发现,该种鸟类的飞行速度v(单位:m/s)与其耗氧量Q之间的关系为:v=a+blog3eq\f(Q,10)(其中a,b是实数).据统计,该种鸟类在静止的时候其耗氧量为30个单位,而其耗氧量为90个单位时,其飞行速度为1m/s.(1)求出a,b的值;(2)若这种鸟类为赶路程,飞行的速度不能低于2m/s,解:(1)由题意可知,当这种鸟类静止时,它的速度为0m/s,此时耗氧量为30个单位,故有a+blog3eq\f(30,10)=0,即a+b=0;①当耗氧量为90个单位时,速度为1m/s故a+blog3eq\f(90,10)=1,整理得a+2b=1.②解方程组eq\b\lc\{(\a\vs4\al\co1(a+b=0,,a+2b=1,))得eq\b\lc\{(\a\vs4\al\co1(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论