版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知实数满足线性约束条件,则的取值范围为()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]2.若点(2,k)到直线5x-12y+6=0的距离是4,则k的值是()A.1 B.-3 C.1或 D.-3或3.函数的图象大致是()A. B.C. D.4.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加5.的展开式中的系数是-10,则实数()A.2 B.1 C.-1 D.-26.已知直线:过双曲线的一个焦点且与其中一条渐近线平行,则双曲线的方程为()A. B. C. D.7.设直线的方程为,圆的方程为,若直线被圆所截得的弦长为,则实数的取值为A.或11 B.或11 C. D.8.已知函数的定义域为,则函数的定义域为()A. B.C. D.9.已知定点,,是圆上的任意一点,点关于点的对称点为,线段的垂直平分线与直线相交于点,则点的轨迹是()A.椭圆 B.双曲线 C.抛物线 D.圆10.已知直线与直线则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件11.()A. B. C. D.12.阅读如图的程序框图,若输出的值为25,那么在程序框图中的判断框内可填写的条件是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若展开式中的常数项为240,则实数的值为________.14.已知圆柱的上下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为36的正方形,则该圆柱的体积为____15.已知实数满足,则的最小值是______________.16.已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则点到抛物线顶点的距离的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.18.(12分)如图,在棱长为的正方形中,,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角.(1)证明:;(2)求与面所成角的正弦值.19.(12分)已知抛物线的焦点为,点在抛物线上,,直线过点,且与抛物线交于,两点.(1)求抛物线的方程及点的坐标;(2)求的最大值.20.(12分)[选修4-5:不等式选讲]设函数.(1)求不等式的解集;(2)已知关于的不等式在上有解,求实数的取值范围.21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若在上恒成立,求的取值范围.22.(10分)在中,角、、所对的边分别为、、,且.(1)求角的大小;(2)若,的面积为,求及的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
作出可行域,表示可行域内点与定点连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),表示可行域内点与定点连线斜率,,,过与直线平行的直线斜率为-1,∴.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题表示动点与定点连线斜率,由直线与可行域的关系可得结论.2.D【解析】
由题得,解方程即得k的值.【详解】由题得,解方程即得k=-3或.故答案为:D【点睛】(1)本题主要考查点到直线的距离公式,意在考查学生对该知识的掌握水平和计算推理能力.(2)点到直线的距离.3.C【解析】
根据函数奇偶性可排除AB选项;结合特殊值,即可排除D选项.【详解】∵,,∴函数为奇函数,∴排除选项A,B;又∵当时,,故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.4.C【解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.5.C【解析】
利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.6.A【解析】
根据直线:过双曲线的一个焦点,得,又和其中一条渐近线平行,得到,再求双曲线方程.【详解】因为直线:过双曲线的一个焦点,所以,所以,又和其中一条渐近线平行,所以,所以,,所以双曲线方程为.故选:A.【点睛】本题主要考查双曲线的几何性质,还考查了运算求解的能力,属于基础题.7.A【解析】
圆的圆心坐标为(1,1),该圆心到直线的距离,结合弦长公式得,解得或,故选A.8.A【解析】试题分析:由题意,得,解得,故选A.考点:函数的定义域.9.B【解析】
根据线段垂直平分线的性质,结合三角形中位线定理、圆锥曲线和圆的定义进行判断即可.【详解】因为线段的垂直平分线与直线相交于点,如下图所示:所以有,而是中点,连接,故,因此当在如下图所示位置时有,所以有,而是中点,连接,故,因此,综上所述:有,所以点的轨迹是双曲线.故选:B【点睛】本题考查了双曲线的定义,考查了数学运算能力和推理论证能力,考查了分类讨论思想.10.B【解析】
利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线,此时两条直线平行;当时,直线,直线,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.11.A【解析】
分子分母同乘,即根据复数的除法法则求解即可.【详解】解:,故选:A【点睛】本题考查复数的除法运算,属于基础题.12.C【解析】
根据循环结构的程序框图,带入依次计算可得输出为25时的值,进而得判断框内容.【详解】根据循环程序框图可知,则,,,,,此时输出,因而不符合条件框的内容,但符合条件框内容,结合选项可知C为正确选项,故选:C.【点睛】本题考查了循环结构程序框图的简单应用,完善程序框图,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13.-3【解析】
依题意可得二项式展开式的常数项为即可得到方程,解得即可;【详解】解:∵二项式的展开式中的常数项为,∴解得.故答案为:【点睛】本题考查二项式展开式中常数项的计算,属于基础题.14.【解析】
由轴截面是正方形,易求底面半径和高,则圆柱的体积易求.【详解】解:因为轴截面是正方形,且面积是36,所以圆柱的底面直径和高都是6故答案为:【点睛】考查圆柱的轴截面和其体积的求法,是基础题.15.【解析】
先画出不等式组对应的可行域,再利用数形结合分析解答得解.【详解】画出不等式组表示的可行域如图阴影区域所示.由题得y=-3x+z,它表示斜率为-3,纵截距为z的直线系,平移直线,易知当直线经过点时,直线的纵截距最小,目标函数取得最小值,且.故答案为:-8【点睛】本题主要考查线性规划问题,意在考查学生对这些知识的理解掌握水平和数形结合分析能力.16.【解析】
根据抛物线,不妨设,取,通过求导得,,再根据以线段为直径的圆恰好经过,则,得到,两式联立,求得点N的轨迹,再求解最值.【详解】因为抛物线,不妨设,取,所以,即,所以,因为以线段为直径的圆恰好经过,所以,所以,所以,由,解得,所以点在直线上,所以当时,最小,最小值为.故答案为:2【点睛】本题主要考查直线与抛物线的位置关系直线的交轨问题,还考查了运算求解的能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.18.(1)证明见详解;(2)【解析】
(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又//,则于点H,则由直二面角可知面,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于.因为//,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,,在中,.所以与面所成角的正弦值为.【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.19.(1),;(2)1.【解析】
(1)根据抛物线上的点到焦点和准线的距离相等,可得p值,即可求抛物线C的方程从而可得解;(2)设直线l的方程为:x+my﹣1=0,代入y2=4x,得,y2+4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣4m,y1y2=﹣4,x1+x2=2+4m2,x1x2=1,(),(x2﹣2,),由此能求出的最大值.【详解】(1)∵点F是抛物线y2=2px(p>0)的焦点,P(2,y0)是抛物线上一点,|PF|=3,∴23,解得:p=2,∴抛物线C的方程为y2=4x,∵点P(2,n)(n>0)在抛物线C上,∴n2=4×2=8,由n>0,得n=2,∴P(2,2).(2)∵F(1,0),∴设直线l的方程为:x+my﹣1=0,代入y2=4x,整理得,y2+4my﹣4=0设A(x1,y1),B(x2,y2),则y1,y2是y2+4my﹣4=0的两个不同实根,∴y1+y2=﹣4m,y1y2=﹣4,x1+x2=(1﹣my1)+(1﹣my2)=2﹣m(y1+y2)=2+4m2,x1x2=(1﹣my1)(1﹣my2)=1﹣m(y1+y2)+m2y1y2=1+4m2﹣4m2=1,(),(x2﹣2,),(x1﹣2)(x2﹣2)+()()=x1x2﹣2(x1+x2)+4=1﹣4﹣8m2+4﹣4+8m+8=﹣8m2+8m+5=﹣8(m)2+1.∴当m时,取最大值1.【点睛】本题考查抛物线方程的求法,考查向量的数量积的最大值的求法,考查抛物线、直线方程、韦达定理等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.(1)(2)【解析】
(1)零点分段去绝对值解不等式即可(2)由题在上有解,去绝对值分离变量a即可.【详解】(1)不等式,即等价于或或解得,所以原不等式的解集为;(2)当时,不等式,即,所以在上有解即在上有解,所以,.【点睛】本题考查绝对值不等式解法,不等式有解求参数,熟记零点分段,熟练处理不等式有解问题是关键,是中档题.21.(1);(2)【解析】
(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,①当时,在上恒成立,则在上单调递增,从而成立,故符合题意;②当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46815-2025钛合金板材超塑成形和扩散连接工艺规范
- 公共设施管理与维护操作手册(标准版)
- 车站人员考勤管理制度
- 财务管理制度
- 办公室员工培训课程更新制度
- 办公室出差与报销管理制度
- 2026年锡山城发集团公开招聘5人备考题库及完整答案详解1套
- 人教版初中语文七下《骆驼祥子》基础复习必刷题(附答案)
- 2026年葫芦岛市南票区政府专职消防队员招聘37人备考题库及参考答案详解一套
- 关于选聘“警民联调”室专职人民调解员20人的备考题库参考答案详解
- 2025-2026学年教科版(新教材)二年级上册科学全册知识点梳理归纳
- MDT在老年髋部骨折合并症患者中的应用策略
- 2026天津农商银行校园招聘考试历年真题汇编附答案解析
- 八上语文期末作文押题常考主题佳作
- 番茄的营养及施肥
- 2025年国家开放大学电大《电子商务概论》机考真题题库及答案1
- 气象行业气象设备运维工程师岗位招聘考试试卷及答案
- 雾化吸入治疗效果的评估与观察
- 员工侵吞货款协议书
- 防爆墙泄压墙施工方案
- 创意美术生蚝课件
评论
0/150
提交评论