2024-2025学年广东省潮州市潮安区数学九年级第一学期开学达标测试试题【含答案】_第1页
2024-2025学年广东省潮州市潮安区数学九年级第一学期开学达标测试试题【含答案】_第2页
2024-2025学年广东省潮州市潮安区数学九年级第一学期开学达标测试试题【含答案】_第3页
2024-2025学年广东省潮州市潮安区数学九年级第一学期开学达标测试试题【含答案】_第4页
2024-2025学年广东省潮州市潮安区数学九年级第一学期开学达标测试试题【含答案】_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年广东省潮州市潮安区数学九年级第一学期开学达标测试试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同。设甲每天加工服装x件。由题意可得方程()A. B.C. D.2、(4分)对于函数y=-x+1,下列结论正确的是()A.它的图象不经过第四象限 B.y的值随x的增大而增大C.它的图象必经过点(0,1) D.当x>2时,y>03、(4分)在平行四边形ABCD中,AC=10,BD=6,则边长AB,AD的可能取值为().A.AB=4,AD=4 B.AB=4,AD=7 C.AB=9,AD=2 D.AB=6,AD=24、(4分)已知正比例函数y=kx(k≠0)的函数值y随x的增大而增大,则一次函数y=-kx+k的图像大致是()A. B. C. D.5、(4分)关于函数y=﹣x﹣2的图象,有如下说法:①图象过点(0,﹣2)②图象与x轴的交点是(﹣2,0)③由图象可知y随x的增大而增大④图象不经过第一象限⑤图象是与y=﹣x+2平行的直线,其中正确说法有()A.5个B.4个C.3个D.2个6、(4分)若分式的值等于0,则的取值是().A. B. C. D.7、(4分)如果是二次根式,那么x应满足的条件是()A.x≠8 B.x<8 C.x≤8 D.x>0且x≠88、(4分)某校对九年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):3.1,4,3.1,1,1,3.1.这组数据的众数是()A.3 B.3.1 C.4 D.1二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一个直角三角形斜边上的中线长为6cm,那么这个直角三角形的斜边长为______cm.10、(4分)如图,过矩形ABCD的对角线BD上一点K分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1_____S2;(填“>”或“<”或“=”)11、(4分)有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是______;这名选手的10次成绩的极差是______.12、(4分)如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________。13、(4分)如果一组数据2,4,,3,5的众数是4,那么该组数据的中位数是___.三、解答题(本大题共5个小题,共48分)14、(12分)我们定义:如图1、图2、图3,在△ABC中,把AB绕点A顺时针旋转α(0°<α<180°)得到AB′,把AC绕点A逆时针旋转β得到AC′,连接B′C′,当α+β=180°时,我们称△AB'C′是△ABC的“旋补三角形”,△AB′C′边B'C′上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.图1、图2、图3中的△AB′C′均是△ABC的“旋补三角形”.(1)①如图2,当△ABC为等边三角形时,“旋补中线”AD与BC的数量关系为:AD=BC;②如图3,当∠BAC=90°,BC=8时,则“旋补中线”AD长为.(2)在图1中,当△ABC为任意三角形时,猜想“旋补中线”AD与BC的数量关系,并给予证明.15、(8分)已知a=,求的值.16、(8分)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为点E、F,且BE=DF.求证:▱ABCD是菱形.17、(10分)先化简,再求值:.其中.18、(10分)某公司欲招聘一名工作人员,对甲、乙两位应聘者进行面试和笔试,他们的成绩(百分制)如下表所示:应聘者面试笔试甲8790乙9182若公司分别赋予面试成绩和笔试成绩6和4的权,计算甲、乙两人各自的平均成绩,谁将被录取?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,在▱ABCD中,∠A=65°,则∠D=____°.20、(4分)若的整数部分是a,小数部分是b,则______.21、(4分)如图,四边形ABCD的对角线AC、BD相交于点O,且OA=OC,OB=OD.请你添加一个适当的条件:______________,使四边形ABCD成为菱形.22、(4分)某超市促销活动,将三种水果采用甲、乙、丙三种方式搭配装进礼盒进行销售.每盒的总成本为盒中三种水果成本之和,盒子成本忽略不计.甲种方式每盒分别装三种水果;乙种方式每盒分别装三种水果.甲每盒的总成本是每千克水果成本的倍,每盒甲的销售利润率为;每盒甲比每盒乙的售价低;每盒丙在成本上提高标价后打八折出售,获利为每千克水果成本的倍.当销售甲、乙、丙三种方式搭配的礼盒数量之比为时,则销售总利润率为__________.23、(4分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH的长为______.二、解答题(本大题共3个小题,共30分)24、(8分)先化简,再求值:,其中a=625、(10分)某中学举行了一次“世博”知识竞赛.赛后抽取部分参赛同学的成绩进行整理,并制作成图表如下:请根据以上图表提供的信息,解答下列问题:(1)写出表格中m和n所表示的数:m=,n=,并补全频数分布直方图;(2)抽取部分参赛同学的成绩的中位数落在第组;(3)如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少?26、(12分)如图,甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.分析甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分钟)变化的函数图象,解决下列问题:(1)求出甲、乙两人所行驶的路程S甲、S乙与t之间的关系式;(2)甲行驶10分钟后,甲、乙两人相距多少千米?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】

根据乙每天比甲多加工1件,乙加工服装24件所用时间与甲加工服装20件所用时间相同,列出相应的方程,本题得以解决.【详解】解:由题意可得,,故选:C.本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的方程.2、C【解析】

根据一次函数的图象及性质逐一进行判断即可.【详解】A,函数图象经过一、二、四象限,故该选项错误;B,y的值随x的增大而减小,故该选项错误;C,当时,,故该选项正确;D,当时,,故该选项错误;故选:C.本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.3、B【解析】

利用平行四边形的性质知,平行四边形的对角线互相平分,再结合三角形三边关系分别进行分析即可.【详解】解:因为:平行四边形ABCD,AC=10,BD=6,所以:OA=OC=5,OB=OD=3,所以:,所以:C,D错误,又因为:四边形ABCD是平行四边形,∴AD=BC、∵AD=4,∴BC=4,∵AB=4,AC=10,∴AB+BC<AC,∴不能组成三角形,故此选此选项错误;因为:AB=4,AD=7,所以:三角形存在.故选B.本题考查平行四边形的性质及三角形的三边关系,掌握平行四边形的性质和三角形三边关系是解题关键.4、D【解析】

先根据正比例函数y=kx的函数值y随x的增大而增大判断出k的符号,再根据一次函数的性质即可得出结论.【详解】∵正比例函数y=kx的函数值y随x的增大而增大,

∴k>0,

∵b=k>0,-k<0,

∴一次函数y=kx+k的图象经过一、二、四象限.

故选C.考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时函数的图象在一、二、四象限.5、B【解析】试题分析:根据一次函数的性质和图象上点的坐标特征解答.解:①将(0,﹣2)代入解析式得,左边=﹣2,右边=﹣2,故图象过(0,﹣2)点,正确;②当y=0时,y=﹣x﹣2中,x=﹣2,故图象过(﹣2,0),正确;③因为k=﹣1<0,所以y随x增大而减小,错误;④因为k=﹣1<0,b=﹣2<0,所以图象过二、三、四象限,正确;⑤因为y=﹣x﹣2与y=﹣x的k值(斜率)相同,故两图象平行,正确.故选B.考点:一次函数的性质.6、C【解析】

分式值为零的条件是分子等于零且分母不等于零.【详解】∵分式的值等于1,∴x-2=1,x+1≠1.解得:x=2.故选C.本题主要考查的是分式值为零的条件,掌握分式值为零的条件是解题的关键.7、C【解析】根据二次根式的性质,被开方数大于等于0可得:,解得:,故选C.8、B【解析】试题分析:在这一组数据中3.1出现了3次,次数最多,故众数是3.1.故选B.考点:众数.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】根据直角三角形斜边上的中线等于斜边的一半解答即可.解:∵直角三角形斜边上的中线长为6,∴这个直角三角形的斜边长为1.考查的是直角三角形的性质,即直角三角形斜边上的中线等于斜边的一半.10、=【解析】

利用矩形的性质可得△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,进而求出答案.【详解】解:∵四边形ABCD是矩形,四边形MBQK是矩形,四边形PKND是矩形,∴△ABD的面积=△CDB的面积,△MBK的面积=△QKB的面积,△PKD的面积=△NDK的面积,∴△ABD的面积﹣△MBK的面积﹣△PKD的面积=△CDB的面积﹣△QKB的面积=△NDK的面积,∴S1=S1.故答案为:=.本题考查了矩形的性质,熟练掌握矩形的性质定理是解题关键.11、小林,9环【解析】

根据折线统计图中小明与小林的飞镖命中的环数波动性大小以及极差的定义,即可得到答案.【详解】根据折线统计图,可知小林是新手,小林10次成绩的极差是10-1=9(环)故答案为:小林,9环.本题主要考查折线统计图中数据的波动性与极差的定义,掌握极差的定义:一组数据中,最大数与最小数的差,是解题的关键.12、【解析】

首先连接EF交AC于O,由矩形ABCD中,四边形EGFH是菱形,易证得△CFO≌△AOE(AAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由△AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.【详解】连接EF交AC于O,∵四边形EGFH是菱形,∴EF⊥AC,OE=OF,∵四边形ABCD是矩形,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠CAB,在△CFO与△AOE中,,∴△CFO≌△AOE(AAS),∴AO=CO,∵AC=,∴AO=AC=5,∵∠CAB=∠CAB,∠AOE=∠B=90°,∴△AOE∽△ABC,∴,∴,∴AE=.故答案为:.此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.13、1【解析】

根据众数为1,可得x等于1,然后根据中位数的概念,求解即可.【详解】解:因为这组数据的众数是1,

∴x=1,

则数据为2、3、1、1、5,

所至这组数据的中位数为1,

故答案为:1.本题考查了众数和中位数的概念:一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.三、解答题(本大题共5个小题,共48分)14、(1)①;②1;(2)AD=BC.【解析】

(1)①首先证明△ADB'是含有30°的直角三角形,可得ADAB'即可解决问题;②首先证明△BAC≌△B'AC',根据直角三角形斜边中线定理即可解决问题;(2)结论:ADBC.如图1中,延长AD到M,使得AD=DM,连接B'M,C'M,首先证明四边形AC'MB'是平行四边形,再证明△BAC≌△AB'M,即可解决问题.【详解】(1)①如图2中,∵△ABC是等边三角形,∴AB=BC=AC=AB'=AC'.∵DB'=DC',∴AD⊥B'C'.∵∠BAC=60°,∠BAC+∠B'AC'=180°,∴∠B'AC'=120°,∴∠B'=∠C'=30°,∴ADAB'BC.故答案为.②如图3中,∵∠BAC=90°,∠BAC+∠B'AC'=180°,∴∠B'AC'=∠BAC=90°.∵AB=AB',AC=AC',∴△BAC≌△B'AC',∴BC=B'C'.∵B'D=DC',∴ADB'C'BC=1.故答案为1.(2)结论:ADBC.理由:如图1中,延长AD到M,使得AD=DM,连接B'M,C'M.∵B'D=DC',AD=DM,∴四边形AC'MB'是平行四边形,∴AC'=B'M=AC.∵∠BAC+∠B'AC'=180°,∠B'AC'+∠AB'M=180°,∴∠BAC=∠MB'A.∵AB=AB',∴△BAC≌△AB'M,∴BC=AM,∴ADBC.本题是四边形综合题,主要考查了全等三角形的判定和性质、平行四边形的判定和性质、直角三角形30度角性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.15、1.【解析】

先将a的值分母有理化,从而判断出a﹣2<0,再根据二次根式的混合运算顺序和运算法则化简原式,继而将a的值代入计算可得.【详解】解:∵a===2﹣,∴a﹣2=2﹣﹣2=﹣<0,则原式==a+3+=2﹣+3+2+=1.本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.16、见解析.【解析】

利用全等三角形的性质证明AB=AD即可解决问题.【详解】∵ABCD是平行四边形,∴∠B=∠D∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,在ΔABE和ΔADF中,∠B=∠DBE=DF∴ΔABE≅ΔADF∴AB=AD∴▱ABCD是菱形.本题考查了菱形的判定、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理是解题的关键.17、原式=,又x2+2x-15=0,得x2+2x=15,∴原式=.【解析】试题分析:先算括号里面的,再算除法,最后算减法,根据x2+2x-15=0得出x2+2x=15,代入代数式进行计算即可.试题解析:原式=.∵x2+2x-15=0,∴x2+2x=15,∴原式=.【点睛】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.18、甲将被录取【解析】试题分析:根据题意先算出甲、乙两位应聘者的加权平均数,再进行比较,即可得出答案.试题解析:甲的平均成绩为:(87×6+90×4)÷10=88.2(分),乙的平均成绩为:(91×6+82×4)÷10=87.4(分),因为甲的平均分数较高,所以甲将被录取.考点:加权平均数.一、填空题(本大题共5个小题,每小题4分,共20分)19、115【解析】

根据平行四边形的对边平行即可求解.【详解】依题意知AB∥CD∴∠D=180°-∠A=115°.此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的对边平行.20、1.【解析】

若的整数部分为a,小数部分为b,∴a=1,b=,∴a-b==1.故答案为1.21、AB=AD.【解析】

由条件OA=OC,AB=CD根据对角线互相平分的四边形是平行四边形可得四边形ABCD为平行四边形,再加上条件AB=AD可根据一组邻边相等的平行四边形是菱形进行判定.【详解】添加AB=AD,∵OA=OC,OB=OD,∴四边形ABCD为平行四边形,∵AB=AD,∴四边形ABCD是菱形,故答案为:AB=AD.此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.22、20%.【解析】

分别设每千克A、B、C三种水果的成本为x、y、z,设丙每盒成本为m,然后根据题意将甲、乙、丙三种方式的每盒成本和利润用x表示出来即可求解.【详解】设每千克A、B、C三种水果的成本分别为为x、y、z,依题意得:

6x+3y+z=12.5x,

∴3y+z=6.5x,

∴每盒甲的销售利润=12.5x•20%=2.5x

乙种方式每盒成本=2x+6y+2z=2x+13x=15x,

乙种方式每盒售价=12.5x•(1+20%)÷(1-25%)=20x,

∴每盒乙的销售利润=20x-15x=5x,

设丙每盒成本为m,依题意得:m(1+40%)•0.8-m=1.2x,

解得m=10x.

∴当销售甲、乙、丙三种方式的水果数量之比为2:2:5时,

总成本为:12.5x•2+15x•2+10x•5=105x,

总利润为:2.5x•2+5x×2+1.2x•5=21x,

销售的总利润率为×100%=20%,

故答案为:20%.此题考查了三元一次方程的实际应用,分析题意,找到关键描述语,找到合适的等量关系是解题的关键.23、【解析】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论