版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024-2025学年广东省江门市恩平市九上数学开学学业水平测试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知一次函数y1=k1x+b1与yA.x<1 B.x>1 C.x<2 D.x>22、(4分)一名考生步行前往考场,10分钟走了总路程的14,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1A.20分钟B.22分钟C.24分钟D.26分钟3、(4分)下列函数关系式中,y是x的反比例函数的是A. B. C. D.4、(4分)如图,方格纸中小正方形的边长为1,,两点在格点上,要在图中格点上找到点,使得的面积为2,满足条件的点有()A.无数个 B.7个 C.6个 D.5个5、(4分)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A. B.8-2 C. D.66、(4分)要比较两名同学共六次数学测试中谁的成绩比较稳定,应选用的统计量为()A.中位数B.方差C.平均数D.众数7、(4分)经过多边形一个角的两边剪掉这个角,则得到的新多边形的外角和()A.比原多边形多 B.比原多边形少 C.与原多边形外角和相等 D.不确定8、(4分)下列命题中,错误的是()A.平行四边形的对角线互相平分B.菱形的对角线互相垂直平分C.矩形的对角线相等且互相垂直平分D.角平分线上的点到角两边的距离相等二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)函数中自变量的取值范围是_________________.10、(4分)某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是_____________.11、(4分)已知整数x、y满足+3=,则的值是______.12、(4分)数据3,7,6,,1的方差是__________.13、(4分)矩形的长和宽是关于的方程的两个实数根,则此矩形的对角线之和是________.三、解答题(本大题共5个小题,共48分)14、(12分)小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过tmin时,小明与家之间的距离为s1m,小明爸爸与家之间的距离为s2m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象。(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?15、(8分)阅读下列材料:数学课上,老师出示了这样一个问题:如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现与存在某种数量关系”;小强:“通过观察和度量,发现图1中线段与相等”;小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.请回答:(1)求证:;(2)探究线段、、之间的数量关系,并证明;(3)若,,求的值(用含的代数式表示).16、(8分)化简求值:1(+1)(-1)-(1-1),其中=1.17、(10分)解下列各题:(1)分解因式:9a2(x﹣y)+4b2(y﹣x);(2)甲,乙两同学分解因式x2+mx+n,甲看错了n,分解结果为(x+2)(x+4);乙看错了m,分解结果为(x+1)(x+9),请分析一下m,n的值及正确的分解过程.18、(10分)在平行四边形ABCD中,连接BD,过点B作BE⊥BD于点B交DA的延长线于点E,过点B作BG⊥CD于点G.(1)如图1,若∠C=60°,∠BDC=75°,BD=6,求AE的长度;(2)如图2,点F为AB边上一点,连接EF,过点F作FH⊥FE于点F交GB的延长线于点H,在△ABE的异侧,以BE为斜边作Rt△BEQ,其中∠Q=90°,若∠QEB=∠BDC,EF=FH,求证:BF+BH=BQ.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)化简二次根式的结果是______.20、(4分)若方程的两根为,,则________.21、(4分)已知一组数据,,,,的平均数是2,那么另一组数据,,,,的平均数是______.22、(4分)若数据8,9,7,8,x,3的平均数是7,则这组数据的众数是________.23、(4分)已知点M(-1,),N(,-2)关于x轴对称,则=_____二、解答题(本大题共3个小题,共30分)24、(8分)如图,矩形ABCD中,点E,F分别在边AB,CD上,点G,H在对角线AC上,EF与AC相交于点O,AG=CH,BE=DF.(1)求证:四边形EGFH是平行四边形;(2)当EG=EH时,连接AF①求证:AF=FC;②若DC=8,AD=4,求AE的长.25、(10分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)26、(12分)八年级(1)班张山同学利用所学函数知识,对函数进行了如下研究:列表如下:x…0123…y…753m1n111…描点并连线(如下图)(1)自变量x的取值范围是________;(2)表格中:________,________;(3)在给出的坐标系中画出函数的图象;(4)一次函数的图象与函数的图象交点的坐标为_______.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
由图象可以知道,当x=1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式k1【详解】两条直线的交点坐标为(1,2),且当x<1时,直线y2在直线y1的上方,故不等式k1x+b1<故选A.本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.2、C【解析】试题解析:他改乘出租车赶往考场的速度是14÷2=18,所以到考场的时间是10+34∵10分钟走了总路程的14∴步行的速度=14÷10=1∴步行到达考场的时间是1÷140故选C.考点:函数的图象.3、D【解析】
根据反比例函数的定义,反比例函数的一般式是y=kx(k≠0),可以判定函数的类型.【详解】A.是一次函数,故此选项错误;B.是正比例函数,故此选项错误;C.不是反比例函数,故此选项错误;D.是反比例函数,故此选项正确。故选D.本题考查反比例函数的定义,熟练掌握反比例函数的定义对选项进行判断是解题关键.4、C【解析】
如解图中的C1、D,连接C1D,根据勾股定理即可求出C1D和AB,然后根据三线合一即可求出S△C1AB=2,然后根据平行线之间的距离处处相等即可求出另外两个点C2、C3,然后同理可找出C4、C5、C6,从而得出结论.【详解】解:设如下图所示中的两个格点为C1、D,连接C1D根据勾股定理可得C1D=AD=BD=,AB=∵C1A=C1B,点D为AB的中点∴C1D⊥AB∴S△C1AB=AB·C1D=2∴此时点C1即为所求过点C1作AB的平行线,交如图所示的格点于C2、C3,根据平行线之间的距离处处相等,此时C2、C3也符合题意;同理可得:S△C4AB=2,∴点C4即为所求,过点C4作AB的平行线,交如图所示的格点于C5、C6,根据平行线之间的距离处处相等,此时C4、C5也符合题意.满足条件的点C共有6个故选C.此题考查的是勾股定理和网格问题,掌握用勾股定理解直角三角形和三线合一的性质是解决此题的关键.5、C【解析】
本题设DH=x,利用勾股定理列出方程即可.【详解】设DH=x,在中,故选C.6、B【解析】分析:方差是用来衡量一组数据波动大小的量,中位数、众数、平均数是反映一组数据的集中程度详解:由于方差反映数据的波动情况,所以要比较两名同学在四次数学测试中谁的成绩比较稳定,应选用的统计量是方差.故选B.点睛:本题考查了统计量的选取问题,熟练掌握各统计量的特征是解答本题的关键.中位数反映一组数据的中等水平,众数反映一组数据的多数水平,平均数反映一组数据的平均水平,方差反映一组数据的稳定程度,方差越大越不稳定,方差越小越稳定.7、C【解析】
根据外角和的定义即可得出答案.【详解】多边形外角和均为360°,故答案选择C.本题考查的是多边形的外角和,比较简单,记住多边形的外角和均为360°.8、C【解析】试题分析:根据平行四边形的性质对A进行判断;根据菱形的性质对B进行判断;根据矩形的性质对C进行判断;根据角平分线的性质对D进行判断.解:A、平行四边形的对角线互相平分,所以A选项的说法正确;B、菱形的对角线互相垂直平分,所以B选项的说法正确;C、矩形的对角线相等且互相平分,所以C选项的说法错误;D、角平分线上的点到角两边的距离相等,所以D选项的说法正确.故选C.二、填空题(本大题共5个小题,每小题4分,共20分)9、且【解析】
根据分式和二次根式有意义的条件列不等式组求解即可.【详解】根据分式和二次根式有意义的条件可得解得且故答案为:且.本题考查了函数自变量取值范围的问题,掌握分式和二次根式有意义的条件是解题的关键.10、1.【解析】
根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可.【详解】解:将数据从小到大重新排列为:5、6、1、1、10、10,
所以这组数据的中位数为=1.
故答案为:1.本题考查中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可.11、6或2或2【解析】
由+3==6,且x、y均为整数,可得=,3=0或=3,3=3或=0,3=,分别求出x、y的值,进而求出.【详解】∵+3==6,又x、y均为整数,∴=,3=0或=3,3=3或=0,3=,∴x=72,y=0或x=18,y=2或x=0,y=8,∴=6或2或2.故答案为:6或2或2.本题考查了算术平方根,二次根式的化简与性质,进行分类讨论是解题的关键.12、10.8【解析】
根据平均数的计算公式先求出这组数据的平均数,再根据方差的公式计算即可.【详解】解:这组数据的平均数是:(3+7+6-2+1)÷5=3,
则这组数据的方差是:[(3-3)2+(7-3)2+(6-3)2+(-2-3)2+(1-3)2]=10.8故答案为:10.8本题考查方差的定义:一般地设n个数据,x1,x2,…xn的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.13、1【解析】
设矩形的长和宽分别为a、b,根据根与系数的关系得到a+b=7,ab=12,利用勾股定理得到矩形的对角线长=,再利用完全平方公式和整体代入的方法可计算出矩形的对角线长为5,则根据矩形的性质得到矩形的对角线之和为1.【详解】设矩形的长和宽分别为a、b,
则a+b=7,ab=12,
所以矩形的对角线长==5,
所以矩形的对角线之和为1.
故答案为:1.本题考查了根与系数的关系,矩形的性质,解题关键在于掌握运算公式.三、解答题(本大题共5个小题,共48分)14、(1)s2=-96t+2400(2)小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m【解析】
(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.【详解】解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,∴小明的爸爸用的时间为:=25(min),即OF=25,如图:设s2与t之间的函数关系式为:s2=kt+b,∵E(0,2400),F(25,0),∴,解得:,∴s2与t之间的函数关系式为:s2=-96t+2400;(2)如图:小明用了10分钟到邮局,∴D点的坐标为(22,0),设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),∴解得:,∴s1与t之间的函数关系式为:s1=-240t+5280(12≤t≤22),当s1=s2时,小明在返回途中追上爸爸,即-96t+2400=-240t+5280,解得:t=20,∴s1=s2=480,∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.15、(1)详见解析;(2),证明详见解析;(3)【解析】
(1)依题意由SAS可证:.可推(2)过点作,且,连接、,由SAS可证可得,可得.利用勾股定理即可知:.即.(3)延长至使,连接.设,,则,,,,.由SAS可证,可得,,由角关系推出.所以.推出,所以.得出结论.【详解】(1)证明:∵四边形为正方形,∴,.∵,∴.∴.(2)结论:.证明:如图2,过点作,且,连接、,则,.∵,,∴∴,.∴.∴.即.(3)解:延长至使,连接.设,,则,,.∵四边形为正方形,∴,,,.∴,∴,,.∴.∴.∴.∴.该题综合性较强,运用了全等三角形、等腰三角形,以及三角形内角和等知识点,灵活运用全等是解题的关键.16、;0【解析】
先利用乘法公式和单项式乘多项式法则将原式进行化简,再将x=1代入求值即可.【详解】解:原式=1(x1-1)-1x1+x==当x=1时,原式=0本题考查的是整式的化简求值,能够准确计算是解题的关键.17、(1)(x﹣y)(3a+1b)(3a﹣1b);(1)m=2,n=9,(x+3)1.【解析】
(1)用提取公因式和平方差公式进行因式分解即可解答;(1)根据已知条件分别求出m和n的值,然后进行因式分解即可解答.【详解】解:(1)原式=9a1(x﹣y)﹣4b1(x﹣y)=(x﹣y)(9a1﹣4b1)=(x﹣y)(3a+1b)(3a﹣1b);(1)∵(x+1)(x+4)=x1+2x+8,甲看错了n,∴m=2.∵(x+1)(x+9)=x1+10x+9,乙看错了m,∴n=9,∴x1+mx+n=x1+2x+9=(x+3)1.本题考查了用提取公因式和平方差公式进行因式分解,熟练掌握解题的关键.18、(1)6﹣2;(2)详见解析.【解析】
(1)根据平行四边形性质可证:△BDE是等腰直角三角形,运用勾股定理可求DE和AD,AE即可求得;(2)过点E作ET⊥AB交BA的延长线于T,构造直角三角形,由平行四边形性质及直角三角形性质可证:△BEQ≌△BET(AAS),△BFH≌△TEF(AAS),进而可证得结论.【详解】解:(1)如图1,过点D作DR⊥BC于R,∵ABCD是平行四边形∴AB∥CD,AD∥BC,AD=BC∵∠C=60°,∠BDC=75°,∴∠CBD=180°﹣(∠C+∠BDC)=45°∴∠ADB=∠CBD=45°∵BE⊥BD∴∠DBE=90°∴∠E=∠BDE=45°∴DE=BD=12∵DR⊥BC∴∠BRD=∠CRD=90°∴∠BDR=∠CBD=45°,∴DR=BR由勾股定理可得即∴DR=BR=6∵∠C=60°∴∠CDR=90°﹣60°=30°∴CR=2,CD=4∴AD=BC=DR+CR=6+2,∴AE=DE﹣AD=12﹣(6+2)=6﹣2;(2)如图2,过点E作ET⊥AB交BA的延长线于T,则∠T=90°∵ABCD是平行四边形∴AB∥CD,∴∠ABD=∠BDC∵∠QEB=∠BDC∴∠QEB=∠ABD∵BG⊥CD,BE⊥BD,FH⊥FE∴∠BGC=∠ABG=∠DBE=∠EFH=∠Q=90°∴∠EBT+∠BET=∠EBT+∠ABD=∠EFT+∠BFH=∠EFT+∠FET=90°,∴∠BET=∠ABD=∠QEB,∠BFH=∠FET∵BE=BE,EF=FH∴△BEQ≌△BET(AAS),△BFH≌△TEF(AAS)∴BQ=BT,BH=FT∵BF+FT=BT∴BF+BH=BQ.本题考查了平行四边形的性质、勾股定理以及全等三角形的性质与判定,解题的关键是灵活运用平行四边形及直角三角形的性质.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
利用二次根式的性质化简.【详解】=.故选为:.考查了二次根式的化简,常用方法:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.20、1【解析】
解:∵∴∴或.∵,∴∴故答案为:1.21、1【解析】
由平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据,,,,的和,然后再用平均数的定义求新数据的平均数.【详解】一组数据,,,,的平均数是2,有,那么另一组数据,,,,的平均数是.
故答案为1.本题考查的是样本平均数的求法及运用,解题的关键是掌握平均数公式:.22、7,1【解析】
由题意知,,解得x=7,这组数据中7,1各出现两次,出现次数最多,故众数是7,1.23、1【解析】
若P的坐标为(x,y),则点P关于x轴的对称点的坐标P′是(x,-y)由此可求出a和b的值,问题得解.【详解】根据题意,得b=-1,a=2,则ba=(-1)2=1,
故答案是:1.考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于横轴的对称点,横坐标不变,纵坐标变成相反数.二、解答题(本大题共3个小题,共30分)24、(1)见解析;(2)①见解析,②1.【解析】
(1)依据矩形的性质,即可得出△AEG≌△CFH,进而得到GE=FH,∠CHF=∠AGE,由∠FHG=∠EGH,可得FH∥GE,即可得到四边形EGFH是平行四边形;
(2)①由菱形的性质,即可得到EF垂直平分AC,进而得出AF=CF;
②设AE=x,则FC=AF=x,DF=8-x,依据Rt△ADF中,AD2+DF2=AF2,即可得到方程,即可得到AE的长.【详解】(1)∵矩形ABCD中,AB∥CD,∴∠FCH=∠EAG,又∵CD=AB,BE=DF,∴CF=AE,又∵CH=AG,∠FCH=∠EAG∴△AEG≌△CFH(SAS),∴GE=FH,∠CHF=∠AGE,∴∠FHG=∠EGH,∴FH∥GE,∴四边形EGFH是平行四边形;(2)①如图,连接AF,∵EG=EH,四边形EGFH是平行四边形,∴四边形GFHE为菱形,∴EF垂直平分GH,又∵AG=CH,∴EF垂直平分AC,∴AF=CF;②设AE=x,则FC=AF=x,DF=8-x,在Rt△ADF中,AD2+DF2=AF2,∴42+(8-x)2=x2,解得x=1,∴AE=1.本题考查了矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键25、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.【解析】
(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 机械通气临床故障处理总结2026
- 道路安全培训知识
- 2026年甘肃省武威市高职单招数学试题及答案
- 道路交通安全及事故课件
- 2026年度执业药师继续教育公需科目考试题库(含答案)
- 2026年甘肃省陇南市高职单招英语试题解析及答案
- 2025小动物视觉电生理数据采集操作规范指南(2025)课件
- 中考语文文言文对比阅读(全国)15《记承天寺夜游》对比阅读16组80题(原卷版)
- 边坡坍塌安全教育培训课件
- 施工现场安全检查计划安排表
- 高中化学会考复习重点资料全
- 技术股入股协议书
- DL-T5796-2019水电工程边坡安全监测技术规范
- 魁北克腰痛障碍评分表(Quebec-Baclain-Disability-Scale-QBPDS)
- 实验室生物安全培训-课件
- 八年级上册历史【全册】知识点梳理背诵版
- 《工会法》及《劳动合同法》教学课件
- 股权转让协议书常电子版(2篇)
- 2023年副主任医师(副高)-推拿学(副高)考试历年高频考点真题演练附带含答案
- 产品质量法课件
- 《食品包装学(第三版)》教学PPT课件整套电子讲义
评论
0/150
提交评论