上海市闵行区信宏中学2025届八年级数学第一学期期末达标检测试题含解析_第1页
上海市闵行区信宏中学2025届八年级数学第一学期期末达标检测试题含解析_第2页
上海市闵行区信宏中学2025届八年级数学第一学期期末达标检测试题含解析_第3页
上海市闵行区信宏中学2025届八年级数学第一学期期末达标检测试题含解析_第4页
上海市闵行区信宏中学2025届八年级数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市闵行区信宏中学2025届八年级数学第一学期期末达标检测试题测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,则第n个三角形中以An为顶点的底角度数是()A.()n•75° B.()n﹣1•65°C.()n﹣1•75° D.()n•85°2.在△ABC中和△DEF中,已知BC=EF,∠C=∠F,增加下列条件后还不能判定△ABC≌△DEF的是()A.AC=DF B.∠B=∠E C.∠A=∠D D.AB=DE3.在,,,,中,无理数的个数是()A.个 B.个 C.个 D.个4.一个正多边形,它的每一个外角都等于45°,则该正多边形是()A.正六边形 B.正七边形 C.正八边形 D.正九边形5.在分式中x的取值范围是()A.x≠﹣2 B.x>﹣2 C.x<﹣2 D.x≠06.计算的结果为()A. B. C. D.7.若,则内应填的式子是()A. B. C.3 D.8.不等式3(x﹣1)≤5﹣x的非负整数解有(

)A.1个B.2个C.3个D.4个9.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是()A.3,3,6 B.1,5,5 C.1,2,3 D.8,3,410.下列交通标志中,是轴对称图形的是()A. B. C. D.11.在平面直角坐标系中,点A(m,-2)与点B(-3,n)关于y轴对称,则点(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.对于函数y=﹣2x+1,下列结论正确的是()A.y值随x值的增大而增大B.它的图象与x轴交点坐标为(0,1)C.它的图象必经过点(﹣1,3)D.它的图象经过第一、二、三象限二、填空题(每题4分,共24分)13.如图,在平行四边形ABCD中,∠C=120°,AD=4,AB=2,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF则EF的最大值与最小值的差为__________.14.如图,一只蚂蚁从点沿数轴向右爬2个单位到达点,点表示,则表示的数为______.15.中,,,点为延长线上一点,与的平分线相交于点,则的度数为__________.16.如图,在Rt△ABC中,∠C=90°,∠B=30°,边AB的垂直平分线DE交AB于点E,交BC于点D,CD=3,则BC的长为___________17.△ABC与△DEF是两个全等的等腰直角三角形,∠BAC=∠D=90°,AB=AC=.现将△DEF与△ABC按如图所示的方式叠放在一起,使△ABC保持不动,△DEF运动,且满足点E在边BC上运动(不与B,C重合),边DE始终经过点A,EF与AC交于点M.在△DEF运动过程中,若△AEM能构成等腰三角形,则BE的长为______.18.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,若CD=3,则AB=______________.三、解答题(共78分)19.(8分)如图,已知在平面直角坐标系中,△ABC三个顶点的坐标分别是A(1,1),B(4,2),C(3,4).(1)画出△ABC关于y轴对称的△A1B1C1(要求:A与A1,B与B1,C与C1相对应);(2)通过画图,在x轴上确定点Q,使得QA与QB之和最小,画出QA与QB,并直接写出点Q的坐标.点Q的坐标为.20.(8分)2019年11月30日上午符离大道正式开通,同时宿州至徐州的K902路城际公交开通试运营,小明先乘K902路城际公交车到五柳站下车,再步行到五柳景区游玩,从出发地到五柳景区全程31千米,共用了1个小时,已知步行的速度每小时4千米,K902路城际公交的速度是步行速度的10倍,求小明乘公交车所行驶的路程和步行的路程.21.(8分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?22.(10分)如图,已知直线与轴,轴分别交于,两点,以为直角顶点在第二象限作等腰.(1)求点的坐标,并求出直线的关系式;(2)如图,直线交轴于,在直线上取一点,连接,若,求证:.(3)如图,在(1)的条件下,直线交轴于点,是线段上一点,在轴上是否存在一点,使面积等于面积的一半?若存在,请求出点的坐标;若不存在,请说明理由.23.(10分)已知点在轴正半轴上,以为边作等边,,其中是方程的解.(1)求点的坐标.(2)如图1,点在轴正半轴上,以为边在第一象限内作等边,连并延长交轴于点,求的度数.(3)如图2,若点为轴正半轴上一动点,点在点的右边,连,以为边在第一象限内作等边,连并延长交轴于点,当点运动时,的值是否发生变化?若不变,求其值;若变化,求出其变化的范围.24.(10分)已知:如图,点B、E、C、F在同一条直线上,AB⊥BF于点B,DE⊥BF于点E,BE=CF,AC=DF.求证:(1)AB=DE;(2)AC∥DF.25.(12分)如图,在平面直角坐标系中,点O是坐标系原点,在△AOC中,OA=OC,点A坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,将△AOC沿AC折叠得到△ABC,请解答下列问题:(1)点C的坐标为;(2)求直线AC的函数关系式;(3)求点B的坐标.26.某校对全校3000名学生本学期参加艺术学习活动的情况进行评价,其中甲班学生本学期参观美术馆的次数以及艺术评价等级和艺术赋分的统计情况,如下表所示:图(1)图(2)(1)甲班学生总数为______________人,表格中的值为_____________;(2)甲班学生艺术赋分的平均分是______________分;(3)根据统计结果,估计全校3000名学生艺术评价等级为级的人数是多少?

参考答案一、选择题(每题4分,共48分)1、C【分析】先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以An为顶点的底角度数.【详解】解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=()2×75°,∠FA4A3=()3×75°,∴第n个三角形中以An为顶点的底角度数是()n﹣1×75°.故选:C.【点睛】本题考查等腰三角形的性质和三角形外角的性质,解题的关键是根据这两个性质求出∠DA2A1,∠EA3A2及∠FA4A3的度数,探索其规律.2、D【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可.【详解】解:如图:A,根据SAS即可推出△ABC≌△DEF,;B.根据ASA即可推出△ABC≌△DEFC.根据AAS即可推出△ABC≌△DEF;D,不能推出△ABC≌△DEF;故选D.【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3、B【分析】根据无理数的定义判断即可.【详解】解:,是无理数,=,可以化成分数,不是无理数.故选B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数.4、C【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.【详解】解:360÷45=8,所以这个正多边形是正八边形.故选C.5、A【分析】根据分式有意义的条件可得x+2≠0,再解即可.【详解】解:由题意得:x+2≠0,

解得:x≠-2,

故选:A.【点睛】此题主要考查了分式有意义的条件的条件,关键是掌握分式有意义的条件是分母不等于零.6、B【分析】根据分式乘除运算法则对原式变形后,约分即可得到结果.【详解】解:==.故选:B.【点睛】本题考查分式的乘除法,熟练掌握运算法则是解本题的关键.7、A【分析】根据题意得出=,利用分式的性质求解即可.【详解】根据题意得出=故选:A.【点睛】本题主要考查分式的基本性质,掌握分式的基本性质是解题的关键.8、C【解析】试题分析:解不等式得:3x﹣3≤5﹣x,4x≤8,x≤2,所以不等式的非负整数解有0、1、2这3个,故答案选C.考点:一元一次不等式组的整数解.9、B【分析】根据三角形的三边关系:三角形两边之和大于第三边.【详解】解:A、3+3=6,不能组成三角形,故此选项错误;

B、1+5>5,能组成三角形,故此选项正确;

C、1+2=3,不能组成三角形,故此选项错误;

D、3+4<8,不能组成三角形,故此选项错误;

故选B.【点睛】本题主要考查了三角形的三边关系,关键是掌握三角形的三边关系.10、D【分析】根据轴对称的概念:一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这个图形就是轴对称图形即可得出答案.【详解】解:A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意;故选:D.【点睛】本题主要考察了轴对称图形,掌握轴对称图形的概念是解题的关键.11、D【分析】根据点A(m,-2)与点B(-3,n)关于y轴对称求出m、n的值,即可得到点(m,n)的坐标,从而判断其所在的象限.【详解】∵点A(m,-2)与点B(-3,m)关于y轴对称∴解得∴点(3,-2)在第四象限故答案为:D.【点睛】本题考查了关于y轴对称的点的问题,掌握关于y轴对称的点的性质、象限的定义以及性质是解题的关键.12、C【分析】根据一次函数的图象和性质,以及一次函数图象上点的坐标特征,一次函数解析式系数的几何意义,逐一判断选项,即可.【详解】∵k=﹣2<0,∴y值随x值的增大而减小,结论A不符合题意;∵当y=0时,﹣2x+1=0,解得:x=,∴函数y=﹣2x+1的图象与x轴交点坐标为(,0),结论B不符合题意;∵当x=﹣1时,y=﹣2x+1=3,∴函数y=﹣2x+1的图象必经过点(﹣1,3),结论C符合题意;∵k=﹣2<0,b=1>0,∴函数y=﹣2x+1的图象经过第一、二、四象限,结论D不符合题意.故选:C.【点睛】本题主要考查一次函数的图象和性质,掌握一次函数图象上点的坐标特征,一次函数解析式系数的几何意义,是解题的关键.二、填空题(每题4分,共24分)13、【分析】取AD的中点M,连接CM、AG、AC,作AN⊥BC于N;再证明∠ACD=90°,求出AC=2、AN=;然后由三角形中位线定理,可得EF=AG,最后求出AG的最大值和最小值即可.【详解】解:如图:取AD的中点M,连接CM、AG、AC,作AN⊥BC于N∵四边形ABCD是平行四边形,∠BCD=120°∴∠D=180°-∠BCD=60°,AB=CD=2∴AM=DM=DC=2∴△CDM是等边三角形∴∠DMC=∠MCD=60°,AM=MC∴∠MAC=∠MCA=30°∴∠ACD=90°∴AC=2在Rt△ACN中,AC=2,∠ACN=∠DAC=30°∴AN=AC=∵AE=EH,GF=FH∴EF=AG∴AG的最大值为AC的长,最小值为AN的长∵AG的最大值为2,最小值为∴EF的最大值为,最小值为∴EF的最大值与最小值的差为-=.故答案为.【点睛】本题考查平行四边形的性质、三角形的中位线定理、等边三角形的判定和性质、直角三角形30度角性质、垂线段最短等知识,正确添加辅助线和证得∠ACD=90是解答本题的关键.14、.【分析】根据平移的性质得出答案即可.【详解】解:蚂蚁从点沿数轴向右爬2个单位到达点,点表示,根据题意得,表示的数为:,故答案是:.【点睛】本题考查了数轴上的点的平移,熟悉相关性质是解题的关键.15、15°【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D=∠A,然后把∠A的度数代入计算即可.【详解】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,

∵∠ACE=∠A+∠ABC,

即∠1+∠2=∠3+∠4+∠A,

∴2∠1=2∠3+∠A,

∵∠1=∠3+∠D,

∴∠D=∠A=×30°=15°.

故答案为:15°.【点睛】本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.16、1.【解析】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD为∠BAC的角平分线,∵∠C=10°,DE⊥AB,∴DE=CD=3,∵∠B=30°,∴BD=2DE=6,∴BC=1.【点睛】本题主要考查的知识点有线段垂直平分线的性质、角平分线上的点到角的两边距离相等的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.17、2﹣或【分析】分若AE=AM则∠AME=∠AEM=45°;若AE=EM;若MA=ME则∠MAE=∠AEM=45°三种情况讨论解答即可;【详解】解:①若AE=AM则∠AME=∠AEM=45°∵∠C=45°∴∠AME=∠C又∵∠AME>∠C∴这种情况不成立;②若AE=EM∵∠B=∠AEM=45°∴∠BAE+∠AEB=135°,∠MEC+∠AEB=135°∴∠BAE=∠MEC在△ABE和△ECM中,,∴△ABE≌△ECM(AAS),∴CE=AB=,∵AC=BC=AB=2,∴BE=2﹣;③若MA=ME则∠MAE=∠AEM=45°∵∠BAC=90°,∴∠BAE=45°∴AE平分∠BAC∵AB=AC,∴BE=BC=.故答案为2﹣或.【点睛】本题考查了等腰三角形的判定,掌握分类讨论的数学思想是解答本题的关键.18、【分析】由已知可得∠BAC=60°,AD为∠BAC的平分线,过点D作DE⊥AB于E,则∠BAD=∠CAD=30°,DE=CD=3,易证△ADB是等腰三角形,且BD=2DE=6,利用等腰三角形的性质及勾股定理即可求得AB的长.【详解】∵在△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°,由题意知AD是∠BAC的平分线,如图,过点D作DE⊥AB于E,∴∠BAD=∠CAD=30°,DE=CD=3,∴∠BAD=∠B=30°,∴△ADB是等腰三角形,且BD=2DE=6,∴BE=AE=,∴AB=2BE=,故答案为:.【点睛】本题考查了角平分线的性质、含30°角的直角三角形性质、等腰三角形的判定与性质,解答的关键是熟练掌握画角平分线的过程及其性质,会利用含30°角的直角三角形的性质解决问题.三、解答题(共78分)19、(1)见解析;(2)见解析,(2,0)【分析】(1)依据轴对称的性质进行作图,即可得到△A1B1C1;(2)作点A关于x轴的对称点A',连接A'B,交x轴于点Q,则QA与QB之和最小.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点Q即为所求,点Q的坐标为(2,0).故答案为:(2,0).【点睛】本题考查了利用轴对称作图以及最短距离的问题,解题的关键是最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.20、30千米;1千米【分析】设小明行驶的路程为x千米,步行的路程y千米,根据题意可得等量关系:①步行的路程+行驶的路程=31千米;②公交车行驶x千米时间+步行y千米的时间=1小时,根据题意列出方程组即可.【详解】解:设小明乘车路程为x千米,步行的路程y千米,∵公交的速度是步行速度的10倍,步行的速度每小时4千米,∴公交的速度是每小时40千米,由题意得:,解得:,∴小明乘公交车所行驶的路程为30千米,步行的路程为1千米.【点睛】本题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系.21、(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)1.【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【详解】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有:,解得:答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=1(元).答:最节省的租车费用是1元.【点睛】本题考查一元一次不等式的应用;二元一次方程组的应用;最值问题.22、(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、(0,)、(1,-1),即可求解;(3)求出BC表达式,将点P代入,求出a值,再根据AC表达式求出M点坐标,由S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5=NB×a=可求解.【详解】解:(1)令x=0,则y=4,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,4)、(﹣2,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,在△CHB和△BOA中,,∴△CHB≌△BOA(AAS),∴BH=OA=4,CH=OB=2,∴点C(﹣6,2),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+4;(2)同理可得直线CD的表达式为:y=﹣x﹣1①,则点E(0,﹣1),直线AD的表达式为:y=﹣3x+4②,联立①②并解得:x=2,即点D(2,﹣2),点B、E、D的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x-1,将点P(﹣,a)代入直线BC的表达式得:,直线AC的表达式为:y=x+4,令y=0,则x=-12,则点M(﹣12,0),S△BMC=MB×yC=×10×2=10,S△BPN=S△BCM=5=NB×a=,解得:NB=,故点N(﹣,0)或(,0).【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键.23、(1);(2);(3)不变化,.【分析】(1)先将分式方程去分母化为整式方程,再求解整式方程,最后检验解是原分式方程的解,即得;(2)先证明,进而可得出,再利用三角形内角和推出,最后利用邻补角的性质即得;(3)先证明,进而得出以及,再根据以上结论以及邻补角对顶角的性质推出,最后根据所对直角边是斜边的一半推出,即得为定值.【详解】(1)∵∴方程两边同时乘以得:解得:检验:当时,∴原分式方程的解为∴点的坐标为.(2)∵、都为等边三角形∴,,∴∴在与中∴∴∵在中,∴∵在中,∴∴∴∵∴.(3)不变化,理由如下:∵、都为等边三角形∴,,∴∴在与中∴∴,∴∵∴∴∵∴∴在中,∴∵A点坐标为∴∴∴为定值9,不变化.【点睛】本题考查等边三角形的性质、全等三角形的性质、含的直角三角形的性质和“手拉手模型”,两个共顶点的顶角相等的等腰三角形构成的图形视作“手拉手模型”,熟练掌握“手拉手模型”及“手拉手模型”的常用结论是解题关键.24、(1)证明见解析;(2)证明见解析【分析】(1)根据已知条件,通过推导Rt△ABC≌Rt△DEF,完成AB=DE的证明;(2)通过Rt△ABC≌Rt△DEF,可得∠ACB=∠DFB,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论